
7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 1/44

PostgreSQL Migration with Database
Migration Service
This document describes how to migrate a PostgreSQL instance and its databases
using the
Database Migration Service (/database-migration).
It outlines various preparation steps and best
practices for the whole migration
process, including caveats and issues. This document is for
data architects and
engineers responsible for migrating PostgreSQL to Cloud SQL for
PostgreSQL.
The document also includes instructions for accomplishing a full migration of
PostgreSQL to Cloud SQL for PostgreSQL.

Managing homogeneous database migration

The
Database Migration Service for PostgreSQL (/database-migration/docs/postgres) implements
the homogeneous database migration of all databases in a source
PostgreSQL instance into a
Cloud SQL for PostgreSQL instance. That
Cloud SQL for PostgreSQL instance is purposely
created as the target
instance. The following diagram shows the flow of information:

Database
migration
service

PostgreSQL
Cloud SQL

Source environment

\ PostgreSQL

Database Migration Service is a managed Google Cloud service. It provides a
graphical user
interface to set up and start the database migration process as
well as to cut over to the target
instance. After the migration is complete,
Database Migration Service promotes the target
instance to be the new source instance.

Database Migration Service migrates all databases from the source instance to the target
instance within the same migration job. This method avoids having to create an
individual
migration job for each database. Before you migrate, you have to
prepare the source instance
and the source databases. This document discusses
those preparations later.

bookmark_border

https://cloud.google.com/database-migration
https://cloud.google.com/database-migration/docs/postgres

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 2/44

Database Migration Service supports migration
across versions
 (/database-migration/docs/postgres/cross-version-support) as well.

The target instance, databases, and tables with primary keys are automatically
created and
migrated by Database Migration Service. Tables without primary keys are not. The
Migrating
tables without a primary key (#migrating-tables-without-pk) section discusses that topic.

Because Database Migration Service is fully managed, it doesn't require any operational
or
management oversight. A user can fully focus on defining and running the
database migration.

Database migration overview

In general, database migration is a multi-step process. The basic steps are
described here. The
detailed steps you must take to migrate a database appear
later in the document.

1. Prepare the source instance and databases

Apply settings that allow for a zero downtime migration;
Database Migration
Service requires these settings.

Install
pglogical (https://www.2ndquadrant.com/en/resources/pglogical/).

2. Specify the migration job

The migration job specification defines the following items:

Source and target instances

Network connectivity

Additional parameters required to set up a migration

The migration job specification also provides a connectivity
test to ensure that the
Database Migration Service service can reach the source
instance.

3. Plan to migrate non-primary-key tables

Create a migration strategy for each table that doesn't have a
primary key before
starting the migration job.

4. Prepare for additional exceptions

https://cloud.google.com/database-migration/docs/postgres/cross-version-support
https://www.2ndquadrant.com/en/resources/pglogical/

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 3/44

In addition to non-primary key tables, other objects might
require special attention;
see
Preparing to run the database migration job (#prep-the-db-migration).

5. Start the migration job

Start the data migration after you complete and successfully
test your migration job
setup tasks.

6. Validate migrated data (optional)

After you have migrated the data and quiesced the source
instance to prevent
further changes, optionally verify that all data is
in the target instance and its
databases.

7. Promote the target instance

After the data migration is complete and optionally validated,
promote the target
instance to the new primary instance.

8. Migrate applications to new primary instance

Migrate the applications that were originally connected to the
source instance to
the new primary instance.

9. Tune the primary instance

To optimize performance, tune the primary instance after the
applications begin to
use it.

10. Set up high availability and disaster recovery

Depending on the requirements, think about enabling disaster recovery
with cross-
region replicas for the new primary instance.

These steps are described in detail throughout this article so that you can
fully understand all
aspects of the complete database migration process in the
context of Database Migration
Service for PostgreSQL.

Assumptions and expectations

This section describes the assumptions and expectations necessary to to migrate
a
PostgreSQL instance and its databases using the instructions in this document.

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 4/44

Database engine version

The following instructions are written for PostgreSQL 13. The source PostgreSQL
instance
runs on Compute Engine. The target Cloud SQL for PostgreSQL
version is also version 13.

If you use earlier versions of PostgreSQL, especially version 9.4 or 9.6, this
document doesn't
apply completely to your case. See
Configure your source
 (/database-migration/docs/postgres/configure-source-database) for more information about those
differences.

Restart the source instance

A basic assumption is that you want to minimize the number of times you restart
the source
instance. Based on this assumption, the article distinguishes between
configuration reloads
and instance restarts. If it's possible for you to avoid
source instance restarts by delaying them
and waiting for an instance restart
that you can't avoid, the document indicates it.

Migrate all databases

Because it's impossible for you to only migrate a subset of the databases in a
PostgreSQL
instance, the article assumes that you migrate all databases in an
instance.

If you want to migrate only a subset of the databases from the source instance,
remove the
databases you don't want before starting the migration.
Alternatively, you can migrate all
databases and drop the databases you don't
want from the target instance once the migration
completes.

Each approach has trade offs: Moving databases to different instances before
the migration
might require changing application configurations and other
processes that access the source
instance. Dropping databases after migration
leaves the source environment unaffected, but
affects the cost and timing of the
migration.

Migrate tables without primary keys

Tables in databases that don't have a primary key aren't migrated automatically
by Database
Migration Service. You must manually migrate them. The
Migrating tables without a primary
key (#migrating-tables-without-pk) section outlines different strategies.

https://cloud.google.com/database-migration/docs/postgres/configure-source-database

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 5/44

star

Extensions, large objects, and external wrappers

Check whether all the features that you use in your source databases are
available in Cloud
SQL for PostgreSQL. For all data-type and data-storage
approaches you use (like external
wrappers), check if pglogical can migrate
them or if you have to manually migrate them. For
more information, see
Preparing to run the database migration job (#prep-the-db-migration).

Costs

This tutorial uses the following billable components of Google Cloud:

Compute Engine (/compute/all-pricing)

Cloud SQL for PostgreSQL (/sql/pricing#pg-pricing)

To generate a cost estimate based on your projected usage,
use the pricing calculator
 (/products/calculator).

Before you begin

1. In the Google Cloud Console, on the project selector page,
select or create a Google
Cloud project.

Note: If you don't plan to keep the
resources that you create in this procedure, create a project instead

of
selecting an existing project. After you finish these steps, you can
delete the project, removing all

resources associated with the project.

Go to project selector (https://console.cloud.google.com/projectselector2/home/dashboard)

2. Make sure that billing is enabled for your Cloud project.
Learn how to confirm that billing
is enabled for your project (/billing/docs/how-to/modify-project).

Preparing a database migration

https://cloud.google.com/compute/all-pricing
https://cloud.google.com/sql/pricing#pg-pricing
https://cloud.google.com/products/calculator
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 6/44

The following instructions show you how to migrate two databases from one
source instance.
The databases contain regular tables with primary keys, and
tables without primary keys.

The instructions help create a source PostgreSQL instance to go through a full
database
migration with Database Migration Service.

In a production environment, you should already have a source instance that
provides a
specific throughput and latency to the clients of the various
databases.

Source instance access

As you prepare for the migration, ensure that you have sufficient access
privileges. You need
the appropriate privileges to perform all necessary changes
to the source instance and source
databases.

Examples of changes that you might have to make appear throughout this
document.

Target instance configuration

The database migration job specification asks for configuration information for
the target
Cloud SQL instance. Providing that information is a best
practice. The configuration
information helps ensure that your application
performs as expected on a Cloud SQL for
PostgreSQL instance.

You can best ensure that the instance meets performance requirements by testing
the
application on a Cloud SQL instance that's configured to meet your
throughput and latency
requirements. After you have finished your testing and
determined the needed Cloud SQL
configuration, note down all
configuration settings. You need them when
specifying a database
migration job (#specifying-a-database-migration-job).

If you don't initially test the application, an alternative approach is to
configure the target
instance like the source instance when creating the
migration job. After the cutover completes
and the application is accessing the
target instance's databases, you can tune the databases.
Be aware, however, that
this tuning step could possibly occur during production.

Network connectivity

Database Migration Service supports different types of network connectivity
 (/database-migration/docs/postgres/configure-connectivity).
The target instance is a replica of the

https://cloud.google.com/database-migration/docs/postgres/configure-connectivity

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 7/44

source instance and therefore it must be
able to connect.

Ensure that your environment supports one of the connectivity types so that you
can configure
those connectivity types during the migration job specification.

Database schema changes

There are three types of
schema changes (https://www.postgresql.org/docs/current/ddl.html):

Changing an existing schema: For example, users can change an
existing table by
adding a column.

Adding schema elements: For example, users can add a new table schema.

Removing schema elements: For example, users can drop an existing
table schema.

Determine if any of these types of changes can happen during database
migration. If they can,
use the information in the
Manage schema changes (#manage_schema_changes) section to
make the changes.

Overview of artifacts for database migration

The following diagram shows the major database migration artifacts and how they
are
interrelated. It doesn't show the database tables of the various
databases:

https://www.postgresql.org/docs/current/ddl.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 8/44

The source instance in the preceding diagram consists of two databases. It also
contains two
configuration files, pg_hba.conf and postgresql.conf, that you
might have to change to
migrate data with Database Migration Service.

A Database Migration Service migration job refers to a connection profile for the source
instance. This profile refers to the source instance. A Database Migration Service
migration job
also refers to a Cloud SQL target instance. The target
instance is a replica of the source
instance (indicated by the dashed arrow).

The target instance connects to the source instance. The source instance must
be accessible
by the IP address of the target instance. If a firewall is
present, it has to allow the IP address of
the target
Cloud SQL for PostgreSQL instance to connect to the source instance.

Completing these instructions creates a source instance on a
Compute Engine VM. To connect
to the source instance, you must open the
firewall for the IP address the target instance uses.

To demonstrate how to move tables without primary keys, the following example
assumes that
not all tables have primary keys and that you manually migrate
those kinds of tables.

Creating a source PostgreSQL instance

The following steps create an example source PostgreSQL instance. You can
follow the
instructions to create a new example instance, or use an existing
instance.

1. In Cloud Shell, create a Compute Engine instance:

2. Use SSH to connect to the Compute Engine instance.

3. Follow the instructions (https://www.postgresql.org/download/linux/ubuntu/) to download and
to install PostgreSQL for Ubuntu.

gcloud beta compute instances create pg-source-1 \

--zone=us-west1-b \

--machine-type=e2-standard-2 \

--image=ubuntu-2004-focal-v20210223 \

--image-project=ubuntu-os-cloud \

--boot-disk-size=10GB

https://www.postgresql.org/download/linux/ubuntu/

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 9/44

4. Sign in to the PostgreSQL shell:

5. Query the server version:

Write down the major version. Use it when you specify a migration job.

6. List the databases and observe that the standard databases are present:

The output is similar to the following list of databases:

Create sample source databases

1. In the PostgreSQL instance, create two databases:

2. Confirm their creation:

sudo -u postgres psql

show server_version;

\l

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+----------+----------+---------+---------+----------------------

 postgres | postgres | UTF8 | C.UTF-8 | C.UTF-8 |

 template0 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres

 | | | | | postgres=CTc/postgres

 template1 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres

 | | | | | postgres=CTc/postgres

CREATE DATABASE dmspg_1;

CREATE DATABASE dmspg_2;

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 10/44

The output is similar to the following list of databases:

3. Connect to the first database and create two tables in each database:

4. Confirm that the system created the database tables:

The output is similar to the following list of relations:

\l

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+----------+----------+---------+---------+----------------------

 dmspg_1 | postgres | UTF8 | C.UTF-8 | C.UTF-8 |

 dmspg_2 | postgres | UTF8 | C.UTF-8 | C.UTF-8 |

 postgres | postgres | UTF8 | C.UTF-8 | C.UTF-8 |

 template0 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres

 | | | | | postgres=CTc/postgres

 template1 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres

 | | | | | postgres=CTc/postgres

(5 rows)

\c dmspg_1

CREATE TABLE accounts (

 user_id VARCHAR(128) PRIMARY KEY,

 username VARCHAR (128) NOT NULL);

CREATE TABLE notes (

 note VARCHAR(256));

\dt

 List of relations

 Schema | Name | Type | Owner

--------+----------+-------+----------

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 11/44

5. Insert some rows into the tables:

Note that the same row is added twice to the notes table because it
doesn't have a
primary key to prevent duplicates.

6. Confirm that the rows were inserted into the tables:

7. Create the same tables and insert the same rows into the second
database dmspg_2. If
you would like to have different tables in the second
database, create them.

8. Exit the PostgreSQL shell:

At this point, the instance contains two databases with two tables each. One of
the tables
doesn't have a primary key and two rows have the same value. This
lets you verify that the
suggested
migration approach (#migrating-tables-without-pk) works.

 public | accounts | table | postgres

 public | notes | table | postgres

(2 rows)

INSERT INTO accounts (user_id, username)

 VALUES('one','Alice');

INSERT INTO accounts (user_id, username)

 VALUES('two','Bob');

INSERT INTO notes (note)

 VALUES('Initial note');

INSERT INTO notes (note)

 VALUES('Second note');

INSERT INTO notes (note)

 VALUES('Second note');

SELECT * FROM accounts;

SELECT * FROM notes;

exit;

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 12/44

Prepare the source instance and databases

Database Migration Service requires
specific preparation steps for the source instance, and for
the databases (/database-migration/docs/postgres/configure-source-database).
In the following
section, preparing the source instance and preparing the source
databases are discussed
separately.

Prepare the source instance

After configuring the source instance, reload it to apply the new configuration
values.

1. In Cloud Shell, use SSH to connect to the Compute Engine instance.

2. Install pglogical by following these instructions:
Installation Instructions for pglogical
 (https://www.2ndquadrant.com/en/resources/pglogical/pglogical-installation-instructions/).

The installation step for PostgreSQL 13 on Ubuntu is as follows:

3. Log in to the PostgreSQL shell:

4. Run the following commands to change the configuration of the instance
(the code
sample uses the default PostgreSQL values):

See
Configure your source
 (/database-migration/docs/postgres/configure-source-database#pglogical) for a discussion
about deciding on the values that apply to your situation.

sudo apt-get install postgresql-13-pglogical

sudo -u postgres psql

ALTER SYSTEM SET shared_preload_libraries = 'pglogical';

ALTER SYSTEM SET wal_level = 'logical';

ALTER SYSTEM SET max_replication_slots = 10;

ALTER SYSTEM SET max_wal_senders = 10;

ALTER SYSTEM SET max_worker_processes = 8;

https://cloud.google.com/database-migration/docs/postgres/configure-source-database
https://www.2ndquadrant.com/en/resources/pglogical/pglogical-installation-instructions/
https://cloud.google.com/database-migration/docs/postgres/configure-source-database#pglogical

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 13/44

5. Reload the instance configuration:

6. Check if an instance restart is required for one of the configurations:

As a best practice, check all the settings that you set. Doing so helps
ensure that you only
restart the instance if one or more setting changes
requires it.

The output is as follows:

The output shows that pending_restart is true. That means a reload of
the
configuration is insufficient and an instance restart is required.

7. Exit from psql:

8. Restart the instance from the ssh shell:

This is an instance restart. It affects the accessing database
clients. You can consider
delaying the instance restart at this point until
you know that there are no other additional
configuration changes that also
require an instance restart, for example,
connecting to an

SELECT * FROM pg_reload_conf();

SELECT pending_restart FROM pg_settings WHERE name = 'max_replication_slots

pending_restart

 t

(1 row)

exit;

sudo systemctl restart postgresql@13-main

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 14/44

instance from an IDE (#connecting-from-ide) or
defining a connectivity method
 (#define_a_connectivity_method).

9. To check that the configuration is correct, log in to psql again:

10. Check that the configuration values are set to the values you specified
earlier:

The output is similar to:

sudo -u postgres psql

SHOW shared_preload_libraries;

SHOW wal_level;

SHOW max_replication_slots;

SHOW max_wal_senders;

SHOW max_worker_processes;

shared_preload_libraries

pglogical

(1 row)

postgres=# SHOW wal_level;

wal_level

logical

(1 row)

postgres=# SHOW max_replication_slots;

max_replication_slots

11

(1 row)

postgres=# SHOW max_wal_senders;

max_wal_senders

10

(1 row)

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 15/44

11. Exit the PostgreSQL shell:

Create a migration user

In order to migrate the source databases, a user must have certain privileges
on all user
databases. In the following steps, you create a migration user for
this purpose. If you already
have a user defined in the instance for this
purpose, skip these steps and use that user profile.

After the migration completes, this user no longer serves a purpose. You can
remove it from
the source instance.

1. In Cloud Shell, log in to the PostgreSQL shell:

2. Create the migration user dbmig:

3. Set the replication role:

4. Exit the PostgreSQL shell:

postgres=# SHOW max_worker_processes;

max_worker_processes

8

(1 row)

exit;

sudo -u postgres psql

CREATE USER dbmig WITH ENCRYPTED PASSWORD 'dbmig';

ALTER USER dbmig WITH REPLICATION;

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 16/44

You might require the user postgres to have a password. The command that sets
an example
password is ALTER USER postgres PASSWORD 'postgres'. In general
it's a good practice to
set passwords for users, so we highly recommend it. If
you require a password login and not a
peer login, you must change the
pg_hba.conf file (located at
/etc/postgresql/13/main/pg_hba.conf). See
the pg_hba.conffile
 (https://www.postgresql.org/docs/current/auth-pg-hba-conf.html),
for more information.

If you plan to connect to any database during the tutorial, set the password
for postgres now
so that you don't have to come back to this section.

Prepare the user databases

After the instance is configured, every user database within it
requires configuration
 (/database-migration/docs/postgres/configure-source-database).
This includes the two databases
that you created earlier (dmspg_1 and
dmspg_2) and postgres.

1. In Cloud Shell, log in to the PostgreSQL shell:

2. List all user databases:

This step helps to ensure that you can see all the user databases. You
start to configure
them in the next step.

3. Connect to each <user_database> (except for template0 and
template1) and run the
following commands:

exit;

sudo -u postgres psql

\l

\c <user_database>

CREATE EXTENSION IF NOT EXISTS pglogical;

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://cloud.google.com/database-migration/docs/postgres/configure-source-database

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 17/44

4. Determine all user schemas in each user database:

If you followed the instructions so far and didn't create schemas, the
only schema in
each database is public and pglogical.

5. Run the following commands (in each user database) for each <schema>
that isn't
pglogical:

6. Run the following commands for the pglogical schema in each user
database:

The Database Migration Service migration job that you specify later only migrates
user
database tables that have a primary key. You must manually migrate the
tables in each
user database that don't have a primary key.

7. In each user database, determine all tables that don't have a primary key.

a. List all databases:

b. The user databases are dmspg_1, dmspg_2, and postgres. For each,
run the
following query
as outlined in Debugging and other tools
 (/database-migration/docs/postgres/debugging-tools#find_tables_without_primary_keys_pks)

:

\dn

GRANT USAGE on SCHEMA <schema> to dbmig;

GRANT SELECT on ALL TABLES in SCHEMA <schema> to dbmig;

GRANT SELECT on ALL SEQUENCES in SCHEMA <schema> to dbmig;

GRANT USAGE on SCHEMA pglogical to dbmig;

GRANT SELECT on ALL TABLES in SCHEMA pglogical to dbmig;

\l

https://cloud.google.com/database-migration/docs/postgres/debugging-tools#find_tables_without_primary_keys_pks

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 18/44

The result lists all schemas and for each schema the tables that don't
have a
primary key. Ignore the pglogical schema. Write down all the
databases and
tables listed in the schemas that aren't pglogical. At
this point, the notes table in
the dmspg_1 schema and in the
dmspg_2 doesn't have a primary key.

8. Exit the PostgreSQL shell:

At this point, you have prepared the source instance and the source databases.
They are ready
for migration by Database Migration Service.

Connecting to the instance from the IDE

All instructions in this section are optional. Only follow them if you would
like to connect to the
instance and its databases using an IDE like
DBeaver (https://dbeaver.io/).
The instructions open
the firewall for the IP address of your client device and
configure PostgreSQL to accept
connection requests from it.

1. Determine the IP address of your device.
Search
 (https://www.google.com/search?q=what+is+my+ip+address) for pages that display your IP
address and write it down (unless you know
the device's IP address already).

select tab.table_schema,

 tab.table_name

from information_schema.tables tab

left join information_schema.table_constraints tco

 on tab.table_schema = tco.table_schema

and tab.table_name = tco.table_name

and tco.constraint_type = 'PRIMARY KEY'

where tab.table_type = 'BASE TABLE'

and tab.table_schema not in ('pg_catalog',

'information_schema')

and tco.constraint_name is null

order by table_schema,

 table_name;

exit;

https://dbeaver.io/
https://www.google.com/search?q=what+is+my+ip+address

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 19/44

2. In Cloud Shell, run the following command to open the firewall
for your IP address and
TCP port 5432:

Replace the following:
device-ip: your device's IP address

3. Use SSH to connect to the VM that runs the PostgreSQL instance.

4. Add your device IP address to the list of devices from which connections
are allowed:

a. Open the pg_hba.conf file, which is typically in the
/etc/postgresql/13/main
directory.

b. Add a line that contains your device IP address to the # IPv4 local
connections
section.

c. Copy the line that allows the IP address 127.0.0.1 to connect.

d. Paste the line into the configuration file.

e. Modify it to include your device's IP address.

f. Terminate the IP address with /32.

5. Add the addresses that the PostgreSQL instance should listen to:

a. Open the postgresql.conf file, which is typically in the
/etc/postgresql/13/main directory.

b. Find the commented entry listen_addresses.

c. Modify it to specify the addresses that the PostgreSQL instance should
listen to.

d. Set the address to '*' so that any connection is accepted:

This change
requires you to restart
 (https://www.postgresql.org/docs/current/runtime-config-connection.html) the source instance.

gcloud compute firewall-rules create my-device \

--allow tcp:5432 \

--source-ranges=device-ip edit

listen_addresses = '*'

https://www.postgresql.org/docs/current/runtime-config-connection.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 20/44

6. Restart the source instance:

After the instance restart, it's possible to connect to the databases in
the instance from
your device.

Later, Database Migration Service publishes the IP address of the target instance
that needs to
access the source instance to perform the data migration. To avoid
restarting the source
instance again, you can wait to perform the steps that
open the source instance to your device
until that point. Then, restarting the
instance once accomplishes both changes at the same
time (or even includes the
configuration changes you made earlier).

If you opened the source instance to '*', then another target instance
restart isn't required. If
you listed specific IP addresses, wait until the
target instance IP address is available to avoid
one instance restart.

All source instance and database preparations are now complete. You can now
create a
source instance connection profile. After that's complete, migrate the
PostgreSQL instance.

Creating a source connection profile

Before creating a database migration job, create a source instance connection
profile.

The following instructions are based on the Cloud Console user
interface.

1. In the Cloud Console, go to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select Connection profiles and then click Create Profile.

3. From the drop-down list, select PostgreSQL.

4. Fill in the fields:

Connection profile name: Use the same name as the compute instance.

sudo systemctl restart postgresql@13-main

https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 21/44

Hostname or IP address: Use the public IP address of the
Compute Engine
instance that runs your PostgreSQL instance.

Username: Use the database migration user that you created earlier.

5. Click Create.

6. Check that the connection profile ID you created appears in the list of
connection
profiles.

Now that a connection profile exists that corresponds to the source PostgreSQL
instance, you
can refer to the profile by its name.

Specifying a database migration job

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 22/44

To specify a database migration job, complete the following steps:

1. In Cloud Console, go to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select Migration jobs and then click Create Migration Job.

3. Review the steps you must perform to specify a migration job.

If you want to read more, you can find additional information in
Specifying a database
migration job (/database-migration/docs/postgres/create-migration-job).

Describe your migration job

This step collects basic configuration information.

1. In Cloud Console, fill in the various input fields:

a. Migration job name: Provide a name for the migration job. A
best practice is to
append some numbering scheme to the name or some
other indicator. You might
have to specify a few migration jobs for
your testing purposes.

b. Source database engine: Select PostgreSQL as the source
database engine.

c. Destination region: Select the destination region for the
target Cloud SQL for
PostgreSQL instance.

d. Migration job type: Select the migration type that you want
to perform from the
drop-down list.

e. Review the prerequisites to be sure that you meet all requirements.

2. Click Save & Continue.

Define a source

This step configures the source instance connection. The screen appears when you
complete
the previous step.

1. In Cloud Console, use the following screen to define a source:

https://console.cloud.google.com/dbmigration/migrations
https://cloud.google.com/database-migration/docs/postgres/create-migration-job

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 23/44

The drop-down list shows the available connection profiles. It also
gives you the option to
create a connection profile.

2. Select the pg-source-1 connection profile that you created earlier.
The screen expands.

3. Click Save & Continue.

Create a destination

In this section, you configure the target instance.

1. In Cloud Console, navigate to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Create a destination. Provide a name, a root
password, and select a target instance
version. Ensure that you record the
root password for future use.

https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 24/44

star Important: Write down your root password. It's required to log in to the
target instance.

You can't change the instance name after you create it. The name you
provide is the
name of the new primary instance after the migration
completes. The best practice is to
name it for its role as a primary
instance, not for its temporary role as a migration target
(as we have done
in this lesson). That name was chosen so you could better understand.
In a
production environment, however, the name you choose should reflect it
being a
(future) primary instance.

3. Select the appropriate IP address option for your destination instance.
The options are
Private or Public (/vpc/docs/ip-addresses).

4. Configure the target instance with the same settings you used for the source
instance. In
a production environment you would use the configuration values
as determined by the
test environment, as discussed in the
Preparing a database migration
 (#preparing_a_database_migration) section.

5. Continue the configuration by selecting a storage type and storage
capacity.

6. Add optional Flag and Label configurations if needed.

7. Click Create & Continue. The following dialog appears:

https://cloud.google.com/vpc/docs/ip-addresses

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 25/44

8. Click Create Destination & Continue. Creating the destination
takes a few minutes.

Define a connectivity method

In this section, you configure the connection to the source instance. After the target instance is
created, its outgoing IP address appears. The source instance must be able to
accept
connections from this IP address.

1. In Cloud Console, navigate to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select an option from the Connectivity method menu to update the source
instance
configuration. Base your selection on the config-file type you're
using (pg_hba.conf
and/or postgresql.conf):

https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 26/44

Depending on how the source instance is configured you might have to
restart it. This
section is the place for the optimization that was
discussed in
Restart the source
instance (#restart_the_source_instance).
This restart enables all the configuration changes
you made up to now to
become effective.

If you only need to modify pg_hba.conf, then reloading the
configuration is sufficient. If
you need to change listen_addresses in
postgresql.conf, then you must restart the
source instance.

3. Add a firewall rule to allow incoming traffic from the outgoing IP
address of the target
instance on port 5432 (or any other port that you
might have configured):

4. Click Save & Continue.

gcloud compute firewall-rules create pg-target-1 \

--allow tcp:5432 \

--source-ranges=<device-ip>

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 27/44

Test and create a migration job

This final step lets you test the configuration and save or start the migration
job. While not
required, configuration testing is a best practice.

1. In Cloud Console, click Test Job:

Testing might take a while.

If an error occurs, you see a warning message that defines the problem.

For more information on debugging your errors see,
Postgresql: Connection refused.
 (https://stackoverflow.com/questions/20825734/postgresql-connection-refused-check-that-the-
hostname-and-port-are-correct-an)

2. When the test succeeds, a message appears saying Tests passed successfully!
You can
create this job without starting it or start it immediately.

3. Click Create Job. If you have not tested, the system displays a warning:

https://stackoverflow.com/questions/20825734/postgresql-connection-refused-check-that-the-hostname-and-port-are-correct-an

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 28/44

4. Click Cancel to cancel out of the message.

5. Click Create & Start Job. A different warning message displays:

6. Click Create & Start to start the migration if you are certain
that the source databases are
ready to migrate.

If you aren't certain, or if you have to make further preparations—for
example
non-primary
key table preparation (#migrating-tables-without-pk)—cancel
out of this error message, click
Save Job, and then click Create
in the Create migration job dialog. This action brings you
back to the
Database Migration page with the new migration job listed:

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 29/44

Preparing to run the database migration job

Before starting a database migration job, you must decide how to migrate tables
without
primary keys (non-PK tables). In addition, you must be aware of how to
deal with materialized
views, schema changes, and other aspects during
migration.

The next sections discuss data types, database behavior, and how to make the
target
databases be 100% consistent with the source databases. Skip the
paragraphs that don't apply
to you.

Migrating tables without a primary key

When you start a migration job that contains one or more tables without a
primary key, you see
a warning that says Keep in mind: Any tables on the
source PostgreSQL database without
primary key constraints won't be migrated.
Are you sure you want to start the job? After you've
started, however, there are no additional warnings or reports on tables without
primary keys
(non-PK tables). Be aware that
Database Migration Service doesn't move tables that don't have
primary keys (/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated).
Manage
these types of tables yourself.

You have to decide on the best time to manually migrate the tables without
primary keys.
Consider these two options:

Prepare non-PK tables before starting a migration job. If you know
that a non-PK table
won't change until the migration completes, you can
copy the data into a table with the
same columns plus a surrogate primary
key. This table is called a transfer table. This

https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 30/44

approach migrates the data
to the target database in the transfer table. Before the
cutover, you can
create the corresponding non-PK table in the target database and copy
the
data from the transfer table into the non-PK table. You can apply this
approach to all
non-PK tables where the rows won't change during the migration.

Migrate non-PK tables during the migration job execution. If you
know that a non-PK
table changes during the migration, then you can create
a transfer table with the same
columns plus a surrogate primary key before
you start the migration. This migration
choice helps ensure that the
migration job knows about this transfer table. However, you
should only
copy the data from the non-PK table into the transfer table when you know
its
schema and data won't change. The latest point to copy the data
is when all data has
been migrated, and shortly before the cutover.

These two approaches are outlined in the following sections. An alternative
approach is to
migrate non-PK tables without the help of Database Migration Service
using the
import facility
of Cloud SQL (/sql/docs/postgres/import-export/importing).

Migrate non-PK tables before starting the database migration

To migrate non-PK tables of the source databases:

1. In Cloud Console, use SSH to connect to the Compute Engine
instance.

2. Log in to the PostgreSQL shell:

3. Create a transfer table. In this case, a transfer table is created for
the non-PK table notes:

4. Insert the rows of the non-PK table into its transfer table
notes_transfer:

sudo -u postgres psql

CREATE TABLE notes_transfer (

 note VARCHAR(256),

 surrogate_id SERIAL PRIMARY KEY);

INSERT INTO notes_transfer (note)

 SELECT note FROM notes;

https://cloud.google.com/sql/docs/postgres/import-export/importing

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 31/44

5. Select the rows to check that the insert worked:

6. Ensure that the migration user has all necessary privileges for this
new table and
sequence as well (use \dn to find the relevant schema):

7. Exit the PostgreSQL shell:

When the migration starts, the transfer table is migrated like any other
regular table with
a primary key.

After the migration completes, insert trasfer-table data into the various target
databases and
then drop the transfer table:

1. In Cloud Console, log in to the target replica following this
procedure:
Check the
migration status in the target instance (#check-target-migration-status).

The non-PK table was automatically created, but no data was migrated.

2. Insert the data from the transfer table into the non-PK table:

3. Drop the transfer table:

SELECT * FROM notes;

GRANT SELECT on ALL TABLES in SCHEMA <schema> to dbmig;

GRANT SELECT on ALL SEQUENCES in SCHEMA <schema> to dbmig;

exit;

INSERT INTO notes (note)

 SELECT note FROM notes_transfer;

DROP TABLE notes_transfer;

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 32/44

Now the data in the non-PK tables of the source databases exists in the target
databases.

Migrate non-PK tables during database migration

The steps in this section are the same as the previous section. However,
inserting the data
from the non-PK table into its corresponding transfer table
occurs after the migration starts.
Only start the migration when you are sure
that the data in the non-PK table won't change.

If the data on the source changes in the non-PK table, you can delete all rows
from the transfer
table, and reinsert the data from the non-PK table. This
action gives you the ability to correct
the contents without having to start the
migration from the beginning.

Manage materialized views

Database Migration Service migrates the schema of materialized views in a database, but
not
the data. See the bullet point on
materialized views in the product documentation
 (/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated) for more information.

1. To list all materialized view names, run:

2. Run the following command before the application cutover for each
materialized view in
every target database:

This command ensures that the materialized views are refreshed on the
target
databases.

Manage schema changes

SELECT schemaname, matviewname

FROM pg_matviews;

REFRESH MATERIALIZED VIEW <view_name>

https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 33/44

Schema changes on source databases aren't automatically migrated by
Database Migration
Serviceto the target databases. Migrate these changes manually, as
outlined in
What changes
are replicated during continuous migration (/database-migration/docs/postgres/faq#replicated) and
in
Continuous migration: PostgreSQL
 (/database-migration/docs/postgres/migration-fidelity#postgresql).

To make a schema change in a source database, follow these steps:

1. Stop all DML (database manipulation language) in the source database
and wait for all
data from the source database to migrate to the target
database. This ensures that both
the source and target database are quiet.

2. Change the schema on the source database and the target database.

3. Complete the changes in both the source database and target database
before resuming
any DML on the source database.

You have two options to implement and execute DDL (data definition language)
statements:

Use commands provided by the pglogical command
pglogical.replicate_ddl_command. See
Continuous migration: PostgreSQL
 (/database-migration/docs/postgres/migration-fidelity#postgresql) for examples.

Execute the DML statements directly without the pglogical command.
This method is
preferred if you use a schema management tool. The only
caveat is that the tool needs to
be able to implement the same change
twice: once on the source database and once on
the target database.

Grant the role before
running DDL on the target database
 (/database-migration/docs/postgres/migration-fidelity#postgresql).

If you have tables without primary keys, and you use the transfer table
approach, any change to
the base table must be applied to the transfer table.

Indirectly related to the execution of DDL statements is the following caveat.
During the initial
load, the DDL statements might be blocked if they can't
access a required lock.
Diagnose
issues for PostgreSQL (/database-migration/docs/postgres/diagnose-issues) has a more detailed
description of an error that might occur on a source
database.

Manage large objects

https://cloud.google.com/database-migration/docs/postgres/faq#replicated
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#postgresql
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#postgresql
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#postgresql
https://cloud.google.com/database-migration/docs/postgres/diagnose-issues

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 34/44

pglogical can't migrate
large objects (https://www.postgresql.org/docs/current/largeobjects.html).
See
What isn't migrated: PostgreSQL
 (/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated) for more information.
While pglogical doesn't migrate the rows of tables that
contain large objects, a table is
created in the target database. If you have
tables with large objects, you must transfer them
yourself, outside of
Database Migration Service.

One approach to transfer large objects is to use pg_dump to export the table
or tables that
contain the large objects and import them into
Cloud SQL. This export must be done
separately for each database in the
instance.

The following describes the process at a high level. The best time to execute
these steps is
after the target instance is available for import and after
promotion. For each source and target
database, determine all tables that
contain large objects.

1. To try out the process (if you want), in Cloud Console, create an example table named
image with
one row:

The insert statement adds one row to the table that contains an image
file. See
SQL-
Oriented Large Object Functions (https://www.postgresql.org/docs/current/lo-funcs.html) to
better understand the basic SQL commands for large objects.

2. Use pg_dump to extract the table or several tables:

This command dumps the table image to a file called dmspg_1.dump.

3. Transfer the dmspg_1.dump file from the source system to a
Cloud Storage bucket:

CREATE TABLE image (

 name text,

 raster oid);

INSERT INTO image (name, raster)

 VALUES ('beautiful image', lo_import('<path>/image.jpg'));

sudo pg_dump --blobs -t image -h localhost --username=postgres dmspg_1 > <pa

https://www.postgresql.org/docs/current/largeobjects.html
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated
https://www.postgresql.org/docs/current/lo-funcs.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 35/44

4. Import the dump:

5. Check if the table exists and is populated after it imports:

6. Display some initial bytes and compare them to the target, to ensure
that the image
imported:

While this process is manual and has to be executed for each source and target
database, it lets you migrate tables with large objects.

You can perform the dump and import steps at any time. The safest time to
perform
these steps is when you know that the tables containing large objects
won't change.

Manage foreign data and extensions

PostgreSQL has a set of
extensions
 (https://www.postgresql.org/docs/current/external-extensions.html).
PostgreSQL provides these

sudo gsutil cp dmspg_1.dump gs://pg-objects

select * from image;

select lo_get(16951, 0, 1000);

https://www.postgresql.org/docs/current/external-extensions.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 36/44

extensions; there is also an ecosystem of extensions
available from other
organizations—
foreign data wrappers (https://www.postgresql.org/docs/current/ddl-foreign-data.html),
for example.

For each extension that you use in the source instance, first ensure that
the extension or an
equivalent is available in Cloud SQL for PostgreSQL (/sql/docs/postgres/extensions).
If Cloud SQL
for PostgreSQL doesn't provide the extension, you must review the
source instance and its
application clients to see if it's possible to remove
the extension from the source instance.

Any data managed by extensions outside of PostgreSQL isn't migrated. You must
migrate
those datasets independent of Database Migration Service.

Manage sequences

While Database Migration Service migrates sequences, the
value of a sequence in the target
might be different from the value of the sequence in the source
 (/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated).
In general, sequences in
the target have a larger value than those in the
source.

To list all sequences in a database:

To check for the last value of a sequence (this example uses the
sequence
public.notes_transfer_surrogate_id_seq):

To select the value of the sequence on the source, use this command. To
select the value
on the target, change the parameters and run the command
again. If it's important that a
sequence has the same value in the source
and target, run the
ALTER SEQUENCE
 (https://www.postgresql.org/docs/current/sql-altersequence.html) statement that best fits your

situation.

Manage database users

SELECT schemaname, sequencename

FROM pg_sequences;

SELECT "last_value", log_cnt, is_called

FROM public.notes_transfer_surrogate_id_seq;

https://www.postgresql.org/docs/current/ddl-foreign-data.html
https://cloud.google.com/sql/docs/postgres/extensions
https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated
https://www.postgresql.org/docs/current/sql-altersequence.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 37/44

Database Migration Service doesn't automatically move the database users of the source
instance and databases,
as outlined in the Database Migration Service documentation
 (/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated).

To list all users in a PostgreSQL instance, run the following command
at the PostgreSQL
command prompt:

You must create the users yourself on the target instance. See
Creating and managing
PostgreSQL users (/sql/docs/postgres/create-manage-users) for more instructions.

Starting the database migration job

After you have decided how to migrate tables without primary keys, you can
start the migration
job. Follow these steps:

1. In Cloud Console, go to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select the migration job from the list of migration jobs by selecting
the checkbox
associated with it.

3. Click the Start button,
or select Start from the drop-down list on the right.

If an error occurs, a dialog explains what happened.

As the migration begins, the Starting dialog appears.

After the migration starts, the Running • Full dump in progress
dialog appears.

While the migration job is running, the Running • CDC in
progress dialog appears.

At this point, the migration job is running and data is migrating from
the source databases to
the target databases.

Check the migration status in the target instance

\du

https://cloud.google.com/database-migration/docs/postgres/migration-fidelity#what_isnt_migrated
https://cloud.google.com/sql/docs/postgres/create-manage-users
https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 38/44

During the migration, you can log in to the target instance and check on the
migration progress
by connecting to the various databases and selecting data
from tables.

1. In Cloud Console, go to the Cloud SQL page:

Go to Cloud SQL (https://console.cloud.google.com/sql/instances)

2. Select the replica that represents the target instance:

3. Select the name (in this case pg-target-1) to view the instance page:

4. Scroll to the Connect to this instance section:

https://console.cloud.google.com/sql/instances

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 39/44

5. Select Connect using Cloud Shell. This action opens
Cloud Shell. From there, you can
issue the usual commands to connect to
the databases in the target instance. Use the
root password that you
provided when specifying the target instance details for the
migration job.

It might be necessary for you to enable the Cloud SQL
Admin API at your first sign in. If
you get a sign-in error,
enable the
Cloud SQL Admin API (/sql/docs/postgres/admin-api).

After you are connected, you can list the databases, connect to those and
select data from the
various tables.

Quiescing, data validation, promotion, application cutover, and
database tuning

To continue to migrate data changes from the source databases to the target
databases, the
migration job has to be running.

https://cloud.google.com/sql/docs/postgres/admin-api

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 40/44

At some point, unless you want to keep the migration running indefinitely, you
have to use the
target database as the new primary database. The following
sections discuss the major steps
to accomplish that goal.

Incurring downtime for quiescing and data validation

Database Migration Service provides a minimum-downtime migration by migrating data while
applications use the source databases. However, to promote the target instance
to be the new
primary instance, you must end changes to the source databases so
that Database Migration
Service can migrate over any remaining changes.

In order to stop changes on the source databases, shut down all clients. This
is called
quiescing the source database. After changes to the source databases
are complete, Database
Migration Service migrates the remaining changes, ending the
migration.

The most reliable way to determine that all data has been migrated is to make
one last change
manually on one of the source databases, and wait for that
change to appear in the
corresponding target database.

After the migration is complete you can validate that all data has been migrated
correctly. One
possible approach to this optional step is to randomly select a
few tables, and run a count
query on the source table and on the corresponding
target table. The counts must be equal.

If you want to be thorough, write a script that compares the count of all
tables in all databases.
If you want to go further, you could execute
aggregation queries for tables with columns that
can be aggregated. In the
extreme case, you would check that each row in the source and
target rows are
equivalent.

To help ensure that the database migration didn't accidentally insert rows that
violate table
constraints, you could validate that all table constraints are
satisfied.

The more validation you do the longer the source and target instances will be
unavailable. The
least amount of downtime is when you don't validate, and you
trust that the replication based
on pglogical works correctly. The longest
downtime is when you establish equivalence on a
row by row basis across all
tables of all databases.

Promote the migration job

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 41/44

After you quiesce the source database and after you perform all the validation
you were
planning, it's time to promote the migration job. Promoting a migration
job stops the migration
and promotes the target instance from being a replica to
being a primary instance.

Promoting the migration job has no effect on the source instance. If for any
reason any
database's content is changed in the source instance, that change
won't be migrated. The
migration job is complete.

To promote a migration job, follow these instructions:

1. In Cloud Console, go to the Database Migration page.

Go to Database migration (https://console.cloud.google.com/dbmigration/migrations)

2. Select the name of the migration job (once the pointer hovers over the
name, it changes
to a link). The Details page appears:

3. Select the Promote button. A dialog appears:

4. Select Promote. The status of the migration job changes to Running
• Promote in
progress:

5. After the promotion finishes, the migration job is complete:

The migration job promotion changes the target instance from a replica to a
regular
primary instance. pg-target-1 was originally a replica of
pg-target-1-master
(representing the source instance), now
it's a standalone primary instance.

Since pg-target-1-master has served its purpose, you can delete it.

6. Select pg-target-1-master (it changes to a link once the pointer
hovers over the name).
This brings you to the details page.

7. Click Delete and follow the instructions in the dialog that appears.

8. After the instance is deleted, the instance is removed from the instances
list.

Application cutover to new primary databases

From the moment the migration job promotion completes, the target instance is
the primary
instance. You now need to connect all applications to the new
primary instance.

https://console.cloud.google.com/dbmigration/migrations

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 42/44

In principle, you don't have to migrate applications when you migrate the
instance. You can
migrate applications before the instance is migrated, while
the instance is migrated, after the
instance is migrated, or not migrate at
all. There are different approaches that depend on the
complexity of the
applications, the availability of personnel, and the risk factors of a
concurrent
migration.

Independent of the decision of when to migrate the application (or applications
if there are
several), the application has to access the new primary instance
instead of the source
instance. Ideally the connection is accomplished by a
configuration change, not by a change of
the application code.

Changes for all clients in the source instance aren't migrated to the new
primary instance. It's a
best practice to establish an inventory of the clients
of the source instance well ahead of the
cutover. Doing so lets you determine
that the client can actually be configured to use the new
primary instance once
it's available.

Instance and database tuning

While not strictly part of the database migration process, once you cutover the
applications to
the target Cloud SQL instance you might need to tune
the instance.

See
Configuring database flags (/sql/docs/postgres/flags) and
Performance Tips
 (https://www.postgresql.org/docs/current/performance-tips.html) for more information.

Source instance management

After the migration job promotion completes, changes to any of the source
databases in the
source instance aren't migrated.

Consider managing the source instance by disabling any non-read access. This
action helps
ensure that no erroneous access takes place without being
immediately detected.

For example, if applications are cut over by updating their configuration files
with new
database connectivity specification, it's entirely possible that one or
more applications might
not be updated by omission. The same can happen with
scripts that are still connecting to the
source instance.

The best time for disabling any non-read access (or all access) to the source
instance is after
quiescing completes. This action helps ensure that no changes
take place and that the cutover

https://cloud.google.com/sql/docs/postgres/flags
https://www.postgresql.org/docs/current/performance-tips.html

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 43/44

error

is consistent.

High availability and disaster recovery setup

The target instance configuration options in Database Migration Service don't let you
set up an
HA Cloud SQL for PostgreSQL instance or create read-replicas in the
same or different regions.

If you need a HA instance, follow the
instructions (/sql/docs/postgres/configure-ha#ha-existing) for
after the target instance was promoted. If you require read replicas, follow
the
instructions
 (/sql/docs/postgres/replication) to set up read replicas. Setting up read replicas is only possible
after the
target instance has been promoted.

Cleaning up

To avoid incurring charges to your Google Cloud account for the resources used in this
tutorial,
either delete the project that contains the resources, or keep the project and
delete the
individual resources.

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for
this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost.
When you created this project, you might have created a custom

project ID that you want to use in
the future. To preserve the URLs that use the project ID, such

as an appspot.com
URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid
exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

Go to Manage resources (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project that you
want to delete, and then click Delete.

https://cloud.google.com/sql/docs/postgres/configure-ha#ha-existing
https://cloud.google.com/sql/docs/postgres/replication
https://console.cloud.google.com/iam-admin/projects

7/29/2021 PostgreSQL Migration with Database Migration Service

https://cloud.google.com/architecture/postgresql-migration-with-database-migration-service 44/44

3. In the dialog, type the project ID, and then click
Shut down to delete the project.

What's next

Learn more about
Database Migration Service for PostgreSQL
 (/database-migration/docs/postgres).

Learn more about the
gcloud commands supported by Database Migration Service
 (/sdk/gcloud/reference/database-migration).

Explore reference architectures, diagrams, tutorials, and best practices about Google
Cloud.
Take a look at our
Cloud Architecture Center (/architecture).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2021-07-29 UTC.

https://cloud.google.com/database-migration/docs/postgres
https://cloud.google.com/sdk/gcloud/reference/database-migration
https://cloud.google.com/architecture
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

