8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Multi-cloud database management:
Architectures, use cases, and best
practices O

This document describes deployment architectures, use cases, and best practices for multi-
cloud database management. It's intended for architects and engineers who design and
implement stateful applications within and across multiple clouds.

Multi-cloud application architectures that access databases are use-case dependent. No
single stateful application architecture can support all multi-cloud use cases. For example, the
best database solution for a cloud bursting (#cloud_bursting) use case is different from the best
database solution for an application that runs concurrently in multiple cloud environments.

For public clouds like Google Cloud, there are various database technologies that fit specific

multi-cloud use cases. To deploy an application in multiple regions within a single public cloud,

one option is to use a public cloud, provider-managed, multi-regional database such as Cloud

Spanner (/spanner). To deploy an application to be portable across public clouds, a platform-

independent database might be a better choice, such as PostgreSQL
(https://www.postgresql.org/).

This document introduces a definition for a stateful database application
(#stateful_database_applications) followed by a multi-cloud database use-case analysis. It then
presents a detailed database system categorization (#database_system_categorization) for multi-
cloud deployment architectures based on the use cases.

The document also introduces a decision tree for selecting databases
(#multi-cloud_database_selection) which outlines key decision points for selecting an appropriate
database technology. It concludes with a discussion about best practices
(#deployment_best_practices) for multi-cloud database management.

Key terms and definitions

This section provides a terminology and defines the generic stateful database application
that's used in this document.

https://cloud.google.com/architecture/multi-cloud-database-management 1/36

https://cloud.google.com/spanner
https://www.postgresql.org/

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Terminology

* Public cloud. A public cloud provides multi-tenant infrastructure (generally global) and
services that customers can use to run their production workloads. Google Cloud is a
public cloud that provides many managed services, including GKE (/kubernetes-engine),
Anthos (/anthos), and managed databases (/products/databases).

e Hybrid cloud. A hybrid cloud is a combination of a public cloud with one or more on-
premises data centers. Hybrid cloud customers can combine their on-premises services
with additional services provided by a public cloud.

e Multi-cloud. A multi-cloud is a combination of several public clouds and on-premises
data centers. A hybrid cloud is a subset of multi-cloud.

» Deployment location. An infrastructure location is a physical location that can deploy and
run workloads, including applications and databases. For example, in Google Cloud,
deployment locations are zones and regions. At an abstract level, a public cloud region or
zone and an on-premises data center are deployment locations.

Stateful database applications

To define multi-cloud use cases, a generic stateful database application architecture is used in
this document, as shown in the following diagram.

‘ Client ‘ ‘ Client
Service A Service B w— Service C
Database

The diagram shows the following components:

https://cloud.google.com/architecture/multi-cloud-database-management 2/36

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/anthos
https://cloud.google.com/products/databases

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

e Database. A database can be a single instance, multi-instance, or distributed database,
deployed on computing nodes or available as a cloud-managed service.

» Application services. These services are combined as an application that implements
the business logic. Application services can be any of the following:

* Microservices on Kubernetes.
e Coarse-grained processes running on one or more virtual machines.
e A monolithic application on one large virtual machine.

e Serverless code in Cloud Functions (/functions) or Cloud Run (/run). Some
application services can access the database. It's possible to deploy each
application service several times. Each deployment of an application service is an
instance of that application service.

» Application clients. Application clients access the functionality that is provided by
application services. Application clients can be one of the following:

* Deployed clients, where code runs on a machine, laptop, or mobile phone.

* Non-deployed clients, where the client code runs in a browser. Application client
instances always access one or more application service instances.

In the context of a multi-cloud database discussion, the architectural abstraction of a stateful
application consists of a database, application services, and application clients. In an
implementation of an application, factors such as the use of operating systems or the
programming languages that are used can vary. However, these details don't affect multi-cloud
database management.

Queues and files as data storage services

There are many persistence resources available for application services to persist data. These
resources include databases, queues, and files. Each persistence resource provides storage
data models and access patterns that are specialized for these models. Although queues,
messaging systems, and file systems are used by applications, in the following section, the
focus is specifically on databases.

Although the same considerations for factors such as deployment location, sharing of state,
synchronous and asynchronous replication for multi-cloud databases are applicable to queues
and files, this discussion is out of the scope of this document.

https://cloud.google.com/architecture/multi-cloud-database-management 3/36

https://cloud.google.com/functions
https://cloud.google.com/run

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Networking

In the architecture of a generic stateful application (shown again in the following diagram),
each arrow between the components represents a communication relationship over a network
connection—for example, an application client accessing an application service.

‘ Client ‘ Client
Service A Service B w— Service C
Database

A connection can be within a zone or across zones, regions, or clouds. Connections can exist
between any combination of deployment locations. In multi- cloud environments, networking
across clouds is an important consideration and there are several options that you can use.
For more information about networking across clouds, see Connecting to Google Cloud: your
networking options explained

(/blog/products/networking/google-cloud-network-connectivity-options-explained).
In the use cases in this document, the following is assumed:

¢ A secure network connection exists between the clouds.

e The databases and their components can communicate with each other.

From a non-functional perspective, the size of the network, meaning the throughput and
latency, might affect the database latency and throughput. From a functional perspective,
networking generally has no effect.

Multi-cloud database use cases

https://cloud.google.com/architecture/multi-cloud-database-management 4/36

https://cloud.google.com/blog/products/networking/google-cloud-network-connectivity-options-explained

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

This section presents a selection of the most common use cases for multi-cloud database
management. For these use cases, it's assumed that there's secure network connectivity
between the clouds and database nodes.

Application migration

In the context of multi-cloud database management, application migration refers to the
migration of an application, all application services, and the database from the current cloud to
a target cloud. There are many reasons that an enterprise might decide to migrate an
application (/solutions/hybrid-and-multi-cloud-patterns-and-practices#migration_and_modernization), for
example, to avoid a competitive situation with the cloud provider, to modernize technology, or
to lower total cost of ownership (TCO).

In application migration, the intent is to stop production in the current cloud and continue
production in the target cloud after the migration completes. The application services must run
in the target cloud. To implement the services, a lift and shift

(https://wiktionary.org/wiki/lift_and_shift) approach can be used. In this approach, the same code
is deployed in the target cloud. To reimplement the service, the modern cloud technologies
that are available in the target cloud can be used.

From a database perspective, consider the following alternative choices for application
migration:

» Database lift and shift: If the same database engine is available in the target cloud, it's
possible to lift and shift the database to create an identical deployment in the target
cloud.

« Database lift and move to managed equivalent: A self-managed database can be
migrated to a managed version of the same database engine if the target cloud provides
it.

» Database modernization: Different clouds offer different database technologies.
Databases managed by a cloud provider could have advantages such as stricter service-
level agreements (SLAs), scalability, and automatic disaster recovery.

Regardless of the deployment strategy, database migration is a process that takes time
because of the need to move data from the current cloud to the target cloud. While it's possible
to follow an export and import approach that incurs downtime, minimal or zero downtime
migration

https://cloud.google.com/architecture/multi-cloud-database-management 5/36

https://cloud.google.com/solutions/hybrid-and-multi-cloud-patterns-and-practices#migration_and_modernization
https://wiktionary.org/wiki/lift_and_shift
https://cloud.google.com/solutions/database-migration-concepts-principles-part-1#migration_downtime_zero_versus_minimal_versus_significant

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

(/solutions/database-migration-concepts-principles-part-
1#migration_downtime_zero_versus_minimal_versus_significant)

is preferable. This approach minimizes application downtime and has the least impact on an
enterprise and its customers.

Disaster recovery

Disaster recovery refers to the ability of an application to continue providing services to
application clients during a region outage. To ensure disaster recovery, an application must be
deployed to at least two regions and be ready to execute at any time. In production, the
application runs in the primary region. However, if an outage occurs, a secondary region
becomes the primary region. The following are different models of readiness in disaster
recovery:

» Hot standby. The application is deployed to two or more regions (primary and
secondary), and the application is fully functioning in every region. If the primary region
fails, the application in the secondary region can take on application client traffic
immediately.

» Cold standby. The application is running in the primary region, however, it's ready for
startup in a secondary region (but not running). If the primary region fails, the application
is started up in the secondary region. An application outage occurs until the application
is able to run and provide all application services to application clients.

* No standby. In this model, the application code is ready for deployment but not yet
deployed in the secondary region (and so not using any deployed resources). If a primary
region has an outage, the first deployment of the application must be in the secondary
region. This deployment puts the application in the same state as a cold standby, which
means that it must be started up. In this approach, the application outage is longer
compared to the cold standby case because application deployment has to take place
first, which includes creating cloud resources.

From a database perspective, the readiness models discussed in the preceding list correspond
to the following database approaches:

* Transactionally synchronized database. This database corresponds to the hot standby
model. Every transaction in the primary region is committed in synchronous coordination
in a secondary region. When the secondary region becomes the primary region during an
outage, the database is consistent and immediately available. In this model, the recovery
point objective (RPO) and the recovery time objective (RTO) are both zero.

https://cloud.google.com/architecture/multi-cloud-database-management

6/36

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1#migration_downtime_zero_versus_minimal_versus_significant

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

» Asynchronously replicated database. This database also corresponds to the hot standby
model. Because the database replication from the primary region to the secondary region
is asynchronous, there's a possibility that if the primary region fails some transactions
might be replicated to the secondary region. While the database in the secondary region
is ready for production load, it might not have the most current data. For this reason, the
application could incur a loss of transactions that aren't recoverable. Because of this risk,
this approach has an RTO of zero, but the RPO is larger than zero.

 Idling database. This database corresponds to the cold standby model. The database is
created without any data. When the primary region fails, data has to be loaded to the
idling database. To enable this action, a regular backup has to be taken in the primary
region and transferred to the secondary region. The backup can be full or incremental,
depending on what the database engine supports. In either case, the database is set
back to the last backup, and, from the perspective of the application, many transactions
can be lost compared to the primary region. While this approach might be cost effective,
the value is mitigated by the risk that all transactions since the last available backup
might be lost due to the database state not being up to date.

* No database. This model is equivalent to the no standby case. The secondary region has
no database installed, and if the primary region fails, a database must be created. After
the database is created, as in the idling database case, it must be loaded with data
before it's available for the application.

The disaster recovery approaches that are discussed in this document also apply if a primary
and a secondary cloud are used instead of a primary and secondary region. The main
difference is that because of the network heterogeneity between clouds, the latency between
clouds might increase compared to the network distance between regions within a cloud.

The likelihood of a whole cloud failing is less than that of a region failing. However, it might still
be useful for enterprises to have an application deployed in two clouds. This approach could
help to protect an enterprise against failure, or help it to meet business or industry regulations.

Another disaster recovery approach is to have a primary and a secondary region and a primary
and a secondary cloud. This approach allows enterprises to choose the best disaster recovery
process to address a failure situation. To enable an application to run, either a secondary
region or a secondary cloud can be used, depending on the severity of the outage.

Cloud bursting

https://cloud.google.com/architecture/multi-cloud-database-management 7/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Cloud bursting (https://wikipedia.org/wiki/Cloud_computing#Hybrid_cloud) refers to a configuration
that enables the scale up of application client traffic across different deployment locations. An
application bursts when demand for capacity increases and a standby location provides
additional capacity. A primary location supports the regular traffic whereas a standby location
can provide additional capacity in case application client traffic is increasing beyond what the
primary location can support. Both the primary and standby location have application service
instances deployed.

Cloud bursting is implemented across clouds where one cloud is the primary cloud and a
second cloud is the standby cloud. It's used in a hybrid cloud context to augment a limited
number of compute resources in on-premises data centers with elastic cloud compute
resources in a public cloud.

For database support, the following options are available:

* Primary location deployment. In this deployment, the database is only deployed in the
primary location and not in the standby location. When an application bursts, the
application in the standby location accesses the database in the primary location.

* Primary and standby location deployment. This deployment supports both the primary
and standby location. A database instance is deployed in both locations and is accessed
by the application service instances of that location, especially in the case of bursting. As
in Disaster recovery within and across clouds (#disaster_recovery), the two databases can
be transactionally synchronized, or asynchronously synchronized. In asynchronous
synchronization, there can be a delay. If updates are taking place in the standby location
then these updates have to be propagated back to the primary location. If concurrent
updates are possible in both locations, conflict resolution must be implemented.

Cloud bursting is a common use case in hybrid clouds to increase capacity in on-premises
data centers. It's also an approach that can be used across public clouds when data has to
stay within a country. In situations where a public cloud has only one region in a country, it's
possible to burst into a region of a different public cloud in the same country. This approach
ensures that the data stays within the country while still addressing resource constraints in the
region of the public cloud regions.

Best-in-class cloud service use

Some applications require specialized cloud services and products that are not available in a
single cloud. For example, an application might perform business logic processing of business

https://cloud.google.com/architecture/multi-cloud-database-management 8/36

https://wikipedia.org/wiki/Cloud_computing#Hybrid_cloud

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

data in one cloud, and analytics of the business data in another cloud. In this use case, the
business logic processing parts and the analytics parts of the application are deployed to
different clouds.

From a data-management perspective, the use cases are as follows:

 Partitioned data. Each part of the application has its own database (separate partition)
and none of the databases are connected directly to each other. The application that
manages the data writes any data that needs to be available in both databases
(partitions) twice.

* Asynchronously replicated database. If data from one cloud needs to be available in the
other cloud, an asynchronous replication relationship might be appropriate. For example,
if an analytics application requires the same dataset or a subset of the dataset for a
business application, the latter can be replicated between the clouds.

e Transactionally synchronized database. These kinds of databases let you make data
available to both parts of the application. Each update from each of the applications is
transactionally consistent and available to both databases (partitions) immediately.
Transactionally synchronized databases effectively act as a single distributed database.

Distributed services

A distributed service is deployed and executed in two or more deployment locations. It's
possible to deploy all service instances into all the deployment locations. Alternatively, it's
possible to deploy some services in all locations, and some only in one of the locations, based
on factors such as hardware availability or expected limited load.

Data in a transactionally synchronized database is consistent in all locations. Therefore, such a
database is the best option to deploy service instances to all deployment locations.

When you use an asynchronous replicated database, there's a risk of the same data item being
modified in two deployment locations concurrently. To determine which of the two conflicting
changes is the final consistent state, a conflict-resolution strategy must be implemented.
Although it's possible to implement a conflict resolution, it's not always easy, and sometimes
requiring manual intervention is needed to bring data back to a consistent state.

Distributed service relocation and failover

https://cloud.google.com/architecture/multi-cloud-database-management

9/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

If a whole cloud region fails, disaster recovery (#disaster_recovery) is initiated. If a single service
in a stateful database application fails (not the region or the whole application), the service has
to be recovered and restarted.

An initial approach for disaster recovery is to restart the failed service in its original
deployment location (a restart-in-place approach). Technologies like Kubernetes automatically
restart a service based on its configuration.

However, if this restart-in-place approach is not successful, an alternative is to restart the
service in a secondary location. The service fails over from its primary location to a secondary
location. If the application is deployed as a set of distributed services (#distributed_services),
then the failover of a single service can take place dynamically.

From a database perspective, restarting the service in its original deployment location doesn't
require a specific database deployment. When a service is moved to an alternative deployment
location and the service accesses the database, then the same readiness models apply that
were discussed in Distributed services (#distributed_services) earlier in this document.

If a service is being relocated on a temporary basis, and if higher latencies are acceptable for
an enterprise during the relocation, the service could access the database across deployment
locations. Although the service is relocated, it continues to access the database in the same
way as it would from its original deployment location.

Context-dependent deployment

In general, a single application deployment to serve all application clients includes all its
application services and databases. However, there are exceptional use cases. A single
application deployment can serve only a subset of clients (based on specific criteria), which
means that more than one application deployment is needed. Each deployment serves a
different subset of clients, and all deployments together serve all clients.

Example use cases for a context-dependent deployment are as follows:

* When deploying a multi-tenant application for which one application is deployed for all
small tenants, another application is deployed for every 10 medium tenants, and one
application is deployed for each premium tenant.

e When there is a need to separate customers, for example, business customers and
government customers.

https://cloud.google.com/architecture/multi-cloud-database-management 10/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

* When there is a need to separate development, staging, and production environments.

From a database perspective, it's possible to deploy one database for each application
deployment in a one-to-one deployment strategy. As shown in the following diagram, this
strategy is a straightforward approach where partitioned data is created because each

deployment has its own dataset.

.ED Client ED Client .ED Client

: ! :

Application

: : :

Application

D D = |
cmes Database <@—— owem Database <4—— omem Database
O O O

The preceding diagram shows the following:

e A setup with three deployments of an application.

* Each dataset has its own respective database.

* No data is shared between the deployments.

In many situations, a one-to-one deployment is the most appropriate strategy, however, there

are alternatives.

In the case of multi-tenancy, tenants might be relocated. A small tenant might turn into a
medium tenant and have to be relocated to a different application. In this case, separate
database deployments require database migration. If a distributed database is deployed and is
used by all deployments at the same time, all tenant data resides in a single database system.
For this reason, moving a tenant between databases doesn't require database migration. The
following diagram shows an example of this kind of database:

https://cloud.google.com/architecture/multi-cloud-database-management

Application

11/36

8/3/2021

IED Client
:

— .)
ommm Application

.

(=]
cmmm Database
(= |

Multi-cloud database management: Architectures, use cases, and best practices

.ED Client

|
L/

o Application

|
Y

O
owes Database
O

The preceding diagram shows the following:

e Three deployments of an application.

e The deployments all share a single distributed database.

* Applications can access all of the data in each deployment.

.EI Client

:
:

C—
cmes Database
—

e There is no data partitioning implemented.

If an enterprise often relocates tenants as part of lifecycle operations, database replication
might be a useful alternative. In this approach, tenant data is replicated between databases
before a tenant migration. In this case, independent databases are used for different
application deployments and only set up for replication immediately before and during tenant
migration. The following diagram shows a temporary replication between two application

deployments during a tenant migration.

o client
!

Application

:

O
omes Database
[« |

O client
!

Application

!

O
omes Database
(= |

.ED Client

:

Application

:

omes Database

https://cloud.google.com/architecture/multi-cloud-database-management

T . .
cmmm Application

12/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

The preceding diagram shows three deployments of an application with three separate
databases holding the data that's associated with each respective deployment. To migrate
data from one database to another, temporary database migration can be set up.

Application portability

Application portability ensures that an application can be deployed into different deployment
locations, especially different clouds. This portability ensures that an application can be
migrated at any time, without the need for migration-specific reengineering or additional
application development to prepare for an application migration.

To ensure application portability, you can use one of the following approaches, which are
described later in this section:

» System-based portability
e API compatibility
* Functionality-based portability

System-based portability uses the same technical components that are used in all possible
deployments. To ensure system-based portability, each technology must be available in all
potential deployment locations. For example, if a database like PostgreSQL is a candidate, its
availability in all potential deployment locations has to be verified for the expected timeframe.
The same is true for all other technologies—for example, programming languages and
infrastructure technologies. As shown in the following diagram, this approach establishes a set
of common functionalities across all the deployment locations based on technology.

| D Client | D Client

O (= |

omss Application omss Application
‘ Same database L

system \

D =]
omes Database omss Database
O O

https://cloud.google.com/architecture/multi-cloud-database-management 13/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

The preceding diagram shows a portable application deployment where the application
expects the exact same database system in every location that it's deployed to. Because the
same database system is used in each location, the application is portable. The application
can expect that the exact same database system will be used across the deployment.
Therefore, the exact same database system interface and behavior can be assumed.

In the context of databases, in the API-compatibility system, the client uses a specific
database access library (for example, a MySQL client library) to ensure that it can connect to
any compliant implementation that might be available in a cloud environment. The following
diagram illustrates the API compatibility.

| u Client | D Client
omss Application omss Application

Same database

l/ system AP| \‘L
O O
o Database cmms Database
O (= |
\ Different database /

system

The preceding diagram shows application portability based on the database system API
instead of the database system. Although the database systems can be different in each of the
locations, the APl is the same and exposes the same functionality. The application is portable
because it can assume the same API in each location, even if the underlying database system
is a different database technology.

In functionality-based portability, different technologies in different clouds might be used that
provide the same functionality. For example, it might be possible to restrict the use of
databases to the relational model. Because any relational database system can support the
application, different database systems on different versions can be used in different clouds
without affecting the portability of the application. A drawback to functionality-based
portability is that it can only use the parts of the database model that all relational database
systems support. Instead of a database system that is compatible with all clouds, a database
model must be used. The following diagram shows an example architecture for functionality-
based portability.

https://cloud.google.com/architecture/multi-cloud-database-management 14/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

: Client .ED Client

l Same data model l

— (for example,
== Application relational) cwss Application
Different database
l——— system API B

=
Database omssm Database
= |
\ Different database /

system

As the preceding diagram shows, the database system API and the database system might be
different in each location. To ensure portability, the application must only use the parts of each
database system and each API that are available in each location. Because only a subset of
each database system is commonly available in each location, the application has to restrict
its use to that subset.

To ensure portability for all the options in this section, the complete architecture must be
continuously deployed to all target locations. All unit and system test cases must be executed
against these deployments. These are essential requirements for changes in infrastructures
and technologies to be detected early and addressed.

Vendor dependency prevention

Vendor dependency (lock-in), (https://wikipedia.org/wiki/Vendor_lock-in) prevention helps to
mitigate the risk of dependency on a specific technology and vendor. It's superficially similar to
application portability. Vendor dependency prevention applies to all technologies that are used,
not only cloud services. For example, if MySQL is used as a database system and installed on
virtual machines in clouds, then there is no dependency from a cloud perspective, but there is a
dependence on MySQL. An application that's portable across clouds might still depend on
technologies that are provided by different vendors than the cloud.

To prevent vendor dependency, all technologies need to be replaceable. For this reason,
thorough and structured abstraction of all application functionality is needed so that each
application service can be reimplemented to a different technology base without affecting how
the application is implemented. From a database perspective, this abstraction can be done by
separating the use of a database model from a particular database-management system.

https://cloud.google.com/architecture/multi-cloud-database-management 15/36

https://wikipedia.org/wiki/Vendor_lock-in

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Existing production database-management system

While many multi-cloud applications are developed with database systems as part of their
design, many enterprises develop multi-cloud applications as a part of their application
modernization effort. These applications are developed with the assumption that the newly
designed and implemented application accesses the existing databases.

There are many reasons for not incorporating existing databases into a modernization effort.
There might be specific features in use that aren't available from other database systems. An
enterprise might have databases with complex and well-established management processes
in place, making a move to a different system impractical or uneconomical. Or, an enterprise
might choose to modernize an application in the first phase, and modernize the database in
the second phase.

When an enterprise uses an existing database system, the designer of the multi-cloud
application has to decide if it will be the only database used, or if a different database system
needs to be added for different deployment locations. For example, if a database is used on-
premises and the application also needs to run in Google Cloud, they need to consider if the
application services deployed on Google Cloud access the database on-premises. Or,
alternatively, if a second database should be deployed both in Google Cloud and for the locally
running application services.

If a second database is deployed in Google Cloud, the use case might be the same as the use
cases discussed in Cloud bursting (#cloud_bursting) or Distributed services (#distributed_services).
In either case, the same database discussion applies as in these sections. However, it's limited
to the cross-location functionality that the existing database on-premises can support—for
example, synchronization and replication.

Deployment patterns

The use cases discussed in this document raise a common question from a database
perspective: if databases are in more than one deployment location, what's their relationship?

The main kinds of relationships (deployment patterns), which are discussed in the next
section, are as follows:

e Partitioned without cross-database dependency

https://cloud.google.com/architecture/multi-cloud-database-management 16/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

e Asynchronous unidirectional replication
 Bidirectional replication with conflict resolution

* Fully active-active synchronized distributed system

It's possible to map each use case in this document to one or more of the four deployment
patterns.

In the following discussion, it's assumed that clients access application services directly.
Depending on the use case, a load balancer might be needed to dynamically direct client
access to applications, as shown in the following diagram.

| Cloud Load
Balancer

' '

.ED Client .ED Client
; ;

(= | (= |
omes Application omes Application

: :

O D
omms Database omss Database
(s | (= |

In the preceding diagram, a cloud load balancer directs client calls to one of the available
locations. The load balancer ensures that load balancing policies are enforced and that clients
are directed to the correct location of the application and its database.

Partitioned without cross-database dependency

This deployment pattern is the simplest of all the patterns discussed in this document: each
location or cloud has a database and the databases contain partitioned datasets that are not
dependent on each other. A data item is stored in only one database. Each data partition is
located in its own database. An example for this pattern is a multi-tenant application where a

https://cloud.google.com/architecture/multi-cloud-database-management 17/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

dataset is in one or the other database. The following diagram shows two fully partitioned
applications.

O client O client
' '

omes Application omes Application
(= | (= |

omss Database s Database
(=] (= |

As the preceding diagram shows, an application is deployed in two locations, each responsible
for a partition of the entire dataset. Each data item resides in only one of the locations,
ensuring a partitioned dataset without any replication between the two.

An alternative deployment pattern for partitioned databases is where the dataset is completely
partitioned but still stored within the same database. There is only one database containing all
datasets. Although the datasets are stored within the same database, the datasets are
completely separate (partitioned) and a change to one doesn't cause changes in another. The
following diagram shows two applications that share a single database.

[0 client [client

: :

omes Application omes Application
(s |
cmss Database
(s |

https://cloud.google.com/architecture/multi-cloud-database-management

18/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

The preceding diagram shows the following:

e Two application deployments that both share a common database, which is in the first
location.

» Each application can access all of the data in the deployment because the dataset isn't
partitioned.

Asynchronous unidirectional replication

This deployment pattern has a primary database that replicates to one or more secondary
databases. The secondary database can be used for read access. An example for this pattern
is when the best database for a particular use case is used as the primary database and the
secondary database is used for analytics. The following diagram shows two applications
accessing unidirectionally replicated databases.

[0 client [0 client
' '

cmms Application omms Application

: :

(= |
cmsm Database
(= |

Database

Y

As the preceding diagram shows, one of the two databases is a replica of the other. The arrow
in the diagram indicates the replication direction: the data from the database system in
location 1 is replicated to the database system in location 2.

Bidirectional replication with conflict resolution

This deployment pattern has two primary databases that are asynchronously replicated to
each other. If the same data is written at the same time to each database (for example, the
same primary key) it can cause a write-write conflict. Because of this risk, there must be a

https://cloud.google.com/architecture/multi-cloud-database-management 19/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

conflict resolution in place to determine which state is the last state during replication. This
pattern can be used in situations where the chance of a write-write conflict is rare. The
following diagram shows two applications accessing bidirectionally replicated databases.

E Client E Client
: :

(= | . . [= | . .
omms Application ommm Application
cmss Database p- ommm Database
(= | (= |

! |

As the preceding diagram shows, each database is replicated to the other database. The two

replications are independent to each other, as indicated in the diagram by two separate blue
arrows. Since the two replications are independent, a conflict can arise if by chance the same
data item is changed by each of the applications and concurrently replicated. In this case,
conflict resolution has to take place.

Fully active-active synchronized distributed system

This deployment pattern has a single database that has an active-active (also primary-primary
or master-master) setup. In an active-active setup, an update of data in any primary database
is transactionally consistent and synchronously replicated. An example use case for this
pattern is distributed computing. The following diagram shows two applications accessing a
fully synchronized primary- primary database.

https://cloud.google.com/architecture/multi-cloud-database-management 20/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

.ED Client .ED Client

: :

omss Application omss Application

: :

(s | (s |
cmes Database <“4—————p omsm Database
(s | (= |

As the preceding diagram shows, this arrangement ensures that each application always
accesses the last consistent state, without a delay or risk of conflict. A change in one database
is immediately available in the other database. Any change is reflected in both databases when
a changing transaction commit happens.

Database system categorization

Not all database-management systems can be used equally well for the deployment patterns

(#deployment_patterns_use_case_evaluation_from_a_database_perspective) that are discussed in this
document. Depending on the use case, it might only be possible to implement one deployment
pattern or a combination of deployment patterns with only a subset of database systems.

In the following section, the different database systems are categorized and mapped to the
four deployment patterns.

It's possible to categorize databases by different dimensions such as data model, internal
architecture, deployment model, and transaction types. In the following section, for the
purpose of multi-cloud database management, two dimensions are used:

» Deployment architecture. The architecture of how a database management system is
deployed onto resources of clouds (for example, compute engines or cloud-managed).

* Distribution model. The model of distribution a database system supports (for example,
single instance or fully distributed).

https://cloud.google.com/architecture/multi-cloud-database-management 21/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

These two dimensions are the most relevant in the context of multi-cloud use cases and can
support the four deployment patterns

(#deployment_patterns_use_case_evaluation_from_a_database_perspective) derived from the multi-
cloud database use cases (#multi-cloud_database_use_cases). A popular categorization is based
on the data models that are supported by a database-management system. Some systems
support only one model (for example, a graph model). Other systems support several data
models at the same time (for example, relational and document models). However, in the
context of multi-cloud database management, this categorization isn't relevant because multi-
cloud applications can use any data model for their multi-cloud deployment.

Database system by deployment architecture

Multi-cloud database management includes the following four main classes of deployment
architecture for database-management systems:

 Built-in cloud databases. Built-in cloud databases are designed, built, and optimized to
work with cloud technology. For example, some database systems use Kubernetes as
their implementation platform and use Kubernetes functionality. CockroachDB

(https://www.cockroachlabs.com/) and YugaByte (https://www.yugabyte.com/) are examples
of this kind of database. They can be deployed into any cloud that supports Kubernetes.

e Cloud provider-managed databases. Cloud provider-managed databases are built on
cloud provider-specific technology and are a database service managed by a specific
cloud provider. Cloud Spanner (/spanner) and Cloud Bigtable (/bigtable). are examples of
this kind of database. Cloud provider-managed databases are only available in the cloud
of the cloud provider and can't be installed and run elsewhere.

* Pre-cloud databases. Pre-cloud databases existed before the development of cloud
technology (sometimes for a long time) and usually run on bare metal hardware and
virtual machines (VMs). PostgreSQL (https://www.postgresgl.org/) and MySQL

(https://www.mysqgl.com/) are examples of this kind of database. These systems can run
on any cloud that supports the required virtual machines or bare metal hardware.

e Cloud partner-managed databases. Some public clouds have database partners that
install and manage customers' databases in the public cloud. For this reason, customers
don't have to manage these databases themselves. MongoDB Atlas (/mongodb) and
MariaDB (https:/mariadb.com/products/skysql/google-cloud-platform/) are examples of this
kind of database.

https://cloud.google.com/architecture/multi-cloud-database-management 22/36

https://www.cockroachlabs.com/
https://www.yugabyte.com/
https://cloud.google.com/spanner
https://cloud.google.com/bigtable
https://www.postgresql.org/
https://www.mysql.com/
https://cloud.google.com/mongodb
https://mariadb.com/products/skysql/google-cloud-platform/

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

There are some variants of these main categories. For example, a database vendor
implementing a database that's built for the cloud might also provide an installation on
technology built for the cloud and a managed offering to customers in their vendor-provided
cloud. This approach is equivalent to the vendor providing a public cloud that supports only
their database as the single service.

Pre-cloud databases might also be in containers and they might be deployable into a
Kubernetes cluster. However, these databases don't use Kubernetes-specific functionality like
scaling, multi-service, or multi-pod deployment.

Database vendors might partner with more than one public cloud provider at the same time,
offering their database as a cloud partner-managed database in more than one public cloud.

Database system by distribution model

Different database-management systems are implemented according to the distribution
models in the architecture of a database. The models for databases are as follows:

* Single instance. A single database instance runs on one VM or one container and acts as
a centralized system. This system manages all database access. Because the single
instance can't be connected to any other instance, the database system doesn't support
replication.

e Multi-instance active-passive. In this common architecture, several database instances
are linked together. The most common linking is an active-passive relationship where one
instance is the active database instance that supports both instances and writes and
reads. One or more passive systems are read-only, and receive all database changes
from the primary either synchronously or asynchronously. Passive systems can provide
read access. Active-passive is also referred to as primary-secondary or master-slave.

» Multi-instance active-active. In this relatively uncommon architecture, each instance is
an active instance. In this case, each instance can execute read and write transactions
and provide data consistency. For this reason, to prevent data inconsistencies, all
instances are always synchronized.

» Multi-instance active-active with conflict resolution. This is also a relatively uncommon
system. Each instance is available for write and read access, however, the databases are
synchronized in an asynchronous mode. Concurrent updates of the same data item are
permitted, which leads to an inconsistent state. A conflict resolution policy has to decide
which of the states is the last consistent state.

https://cloud.google.com/architecture/multi-cloud-database-management 23/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

» Multi-instance sharding. Sharding is based on the management of (disjointed) partitions
of data. A separate database instance manages each partition. This distribution is
scalable because more shards can be added dynamically over time. However, cross-
shard queries might not be possible because this functionality is not supported by all
systems.

All the distribution models that are discussed in this section can support sharding and can be
a sharded system. However, not all systems are designed to provide a sharding option.
Sharding is a scalability concept and isn't generally relevant for architectural database
selection in multi-cloud environments.

Distribution models are different for cloud and partner-managed databases. Because these
databases are tied to the architecture of a cloud provider, these systems implement
architectures based on the following deployment locations:

e Zonal system. A zonal-managed database system is tied to a zone. When the zone is
available, the database system is available too. However, if the zone becomes
unavailable, it's not possible to access the database.

* Regional system. A regional-managed database is tied to a region and is accessible
when at least one zone is accessible. Any combination of zones can become
inaccessible.

» Cross-regional system. A cross-regional system is tied to two or more regions and
functions properly when at least one region is available.

A cross-regional system can also support a cross-cloud system if the database can be
installed in all the clouds that an enterprise intends to use.

There are other possible alternatives to the managed-database architectures discussed in this
section. A regional system might share a disk between two zones. If either of the two zones
becomes inaccessible, the database system can continue in the remaining zone. However, if
an outage affects both zones, the database system is unavailable even though other zones
might still be fully online.

Mapping database systems to deployment patterns

The following table describes how the deployment patterns and deployment architectures that
are discussed in this document relate to each other. The fields state the conditions that are

https://cloud.google.com/architecture/multi-cloud-database-management 24/36

8/3/2021

Multi-cloud database management: Architectures, use cases, and best practices

needed for a combination to be possible, based on deployment pattern and deployment

architecture.

Deployment pattern

Deploymentpartitioned

architectureyithout cross-
database
dependency

Asynchronous unidirectional replication

Built-in
cloud
databases

Possible for all Cloud database that provides replication.
clouds that

provide built-in

cloud

technology

used by

database

systems.

If the same
database isn't
available,
different
database
systems can be
used.

Cloud
provider-

Database

Replica doesn't have to be the cloud provider-
systems can be managed database (see The role of database

managed differentin migration technology in deployment patterns

databases different clouds. (#database_system_by_deployment_architecture)clouds, if

).

https://cloud.google.com/architecture/multi-cloud-database-management

. . Fully active-
Bidirectional .y
N active
replication .
. . . synchronized
with conflict | .
. distributed
resolution
system
Cloud Cloud database

database
that
provides
bidirectional
replication.

that provides
primary-primary

Only within Only within a
a cloud, not cloud, not
across
the database
the provides
database primary-primary
provides
bidirectional
replication.

synchronization.

across clouds, if

synchronization.

25/36

8/3/2021

Multi-cloud database management: Architectures, use cases, and best practices

Deploymentpgrtitioned
architectureyithout cross-

Pre-cloud
databases

Cloud
partner-
managed
databases

database
dependency

Database Replication is possible across several clouds.

systems can be
the same or
different in
different clouds.

Database Replica doesn't have to be the cloud provider-

systems can be managed database.
different in

different clouds.If the partner provides a managed database
system in all required clouds, the same database

If the partner can be used.
provides a

managed

database

system in all

required clouds,

the same

database can

be used.

Deployment pattern

Asynchronous unidirectional replication

Fully active-
ctive

synchronized

distributed

system

Bidirectional
replication
with conflict
resolution

Database Database
system system provides
provides primary-primary
bidirectional synchronization.
replication

and conflict

resolution.

Database Database
system system provides
provides primary-primary
bidirectional synchronization.
replication

and conflict

resolution.

If a database system doesn't provide built-in replication, it might be possible to use database
replication technology instead. For more information, see The role of database migration
technology in deployment patterns (#database_migration_and_replication).

The following table relates the deployment patterns to distribution models. The fields state the
conditions for which the combination is possible given a deployment pattern and a distribution

model.

Distribution model

https://cloud.google.com/architecture/multi-cloud-database-management

Deployment pattern

26/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Distribution model Asyn idirectional Fully active-active
IStrbut Partitioned without cross- Y,Bammfﬁ'ﬁgﬁﬁm . oy “_’ v
unidirectional replication with synchronized

database dependenc
P y replication conflict resolution distributed system

Asynchronous Bidirectional Fully active-active
unidirectional replication with synchronized
replication conflict resolution distributed system

Partitioned without cross-
database dependency

Single instance Possible with the same or Not applicable Not applicable Not applicable

different database system in

the involved clouds.

Possible with the same or Replicationis Replication is Not applicable
different database system in possible possible across

Multi-instance the involved clouds. across clouds. clouds.
active-passive

Possible with the same or Not applicable Not applicable Synchronization is
different database system in possible across clouds.
Multi-instance the involved clouds.
active-active

Possible with the same or Not applicable Not applicable Applicable if

different database system in bidirectional replication
Multi-instance the involved clouds. is possible across
active-active with clouds.

conflict resolution

Some implementations of distribution models that add additional abstraction based on the
underlying database technology don't have such a distribution model built into it—for example,
Postgres-BDR (https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/), an active-
active system. Such systems are included in the preceding table in the respective category.
From a multi-cloud perspective, it's irrelevant how a distribution model is implemented.

Database migration and replication

Depending on the use case, an enterprise might need to migrate a database from one
deployment location to another. Alternatively, for downstream processing, it might need to
replicate the data for a database to another location. In the following section, database
migration and database replication are discussed in more detail.

https://cloud.google.com/architecture/multi-cloud-database-management 27/36

https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Database migration

Database migration is used when a database is being moved from one deployment location to
another. For example, a database running in an on-premises data center is migrated to run on
the cloud instead. After migration is complete, the database is shut down in the on-premises
data center.

The main approaches to database migration are as follows:

 Lift and shift. The VM and the disks running the database instances are copied to the
target environment as they are. After they are copied, they are started up and the
migration is complete.

e Export and import and backup and restore. These approaches both use database
system functionality to externalize a database and recreate it at the target location.
Export/import usually is based on an ASCII format, whereas backup and restore is based
on a binary format.

» Zero downtime migration. In this approach, a database is migrated while the application
systems access the source system. After an initial load, changes are transmitted from
the source to the target database using change data capture (CDC)

(https://wikipedia.org/wiki/Change_data_capture) technologies. The application incurs
downtime from the time it's stopped on the source database system, until it's restarted
on the target database system after migration is complete.

Database migration becomes relevant in multi-cloud use cases when a database is moved
from one cloud to another, or from one kind of database engine to another.

Database migration is a multi-faceted process. For more information, see Database migration:
Concepts and principles (Part 1)_ (/solutions/database-migration-concepts-principles-part-1)and
Database migration: Concepts and principles (Part 2)

(/solutions/database-migration-concepts-principles-part-2).

Built-in database technologies can be used to do database migration—for example
export/import, backup/restore, or built-in replication protocols. When the source and target
system are different database systems, migration technologies are the best option for
database migration. Striim (http://www.striim.com) and Debezium (https://debezium.io/) are both
examples of database migration technologies.

Database replication

https://cloud.google.com/architecture/multi-cloud-database-management 28/36

https://wikipedia.org/wiki/Change_data_capture
https://cloud.google.com/solutions/database-migration-concepts-principles-part-1
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2
http://www.striim.com/
https://debezium.io/

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Database replication is similar to database migration. However, during database replication,
the source database system stays in place while every change is transmitted to the target
database.

Database replication is a continuous process that sends changes from the source database to
the target database. When this process is asynchronous, the changes arrive at the target
database after a short delay. If the process is synchronous, the changes to the source system
are made to the target system at the same time and to the same transactions.

Aside from replicating a source to a target database, a common practice is to replicate data
from a source database to a target analytics system.

As with database migration, if replication protocols are built in, built-in database technology

can be used for database replication. If there are no built-in replication protocols, it's possible

to use replication technology such as Striim (http://www.striim.com) or Debezium
(https://debezium.io/).

The role of database migration technology in deployment patterns

Built-in database technology to enable replication isn't generally available when different
database systems are used in deployment patterns—for example, asynchronous
(heterogeneous) replication. Instead, database migration technology can be deployed to
enable this kind of replication. Some of these migration systems also implement bidirectional
replication (https://www.striim.com/docs/en/bidirectional-replication.html).

If database migration or replication technology is available for the database systems used in
combinations marked as "Not applicable" in Table 1 or Table 2 in Mapping_database systems
to deployment patterns (#mapping_database_systems_to_deployment_patterns) then it might be
possible to use it for database replication. The following diagram shows an approach for
database replication using a migration technology.

https://cloud.google.com/architecture/multi-cloud-database-management 29/36

http://www.striim.com/
https://debezium.io/
https://www.striim.com/docs/en/bidirectional-replication.html

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

| u Client | D Client
omss Application omss Application

: :

s Migration

C—
omssm Database ——» Dmam
C— Cmmmm server

o
———» oDmmm Database
C—

In the preceding diagram, the database in location 1 is replicated to the database in location 2.
Instead of a direct database system replication, a migration server is deployed to implement
the replication. This approach is used for database systems that don't have database
replication functionality built into their implementation and that need to rely on a system
separate from the database system to implement replication.

Multi-cloud database selection

The multi-cloud database use cases combined with the database system categorization helps
you to decide which databases are best for a given use case. For example, to implement the
use case in Application portability (#application_portability), there are two options. The first option
is to ensure that the same database engine is available in all clouds. This approach ensures
system portability. The second option is to ensure that the same data model and query
interface is available to all clouds. Although the database systems might be different, the
portability is provided on a functional interface.

The decision trees in the following sections show the decision-making criteria for the multi-
cloud database use cases in this document. The decision trees suggest the best database to
consider for each use case.

Best practices for existing database system

If a database system is in production, a decision must be made about whether to keep or
replace it. The following diagram shows the questions to ask in your decision process:

https://cloud.google.com/architecture/multi-cloud-database-management 30/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Start

\ 4

yes Database no
system in
production?

\/ \/

yes Keep no Select
database »| database

system? system

not sure: explore *

\ 4

Done

The questions and answers in the decision tree are as follows:

* |s a database system in production?

* If no database system is in production, select a database system (skip to the
Decision on multi-cloud database management

(#decision_on_multi-cloud_database_management)).

 |f a database system is in production, evaluate whether it should be retained.
 |f a database system is in production, evaluate whether it should be retained.

* |f the database system should be retained, then the decision is made and the
decision process is complete.

 [f the database system should be changed or if the decision is still being made,
select a database system (skip to the Decision on multi-cloud database
management (#decision_on_multi-cloud_database_management)).

Decision on multi-cloud database management

The following decision tree is for a use case with a multi-location database requirement
(including a multi-cloud database deployment). It uses the deployment pattern as the basis for
the decision-making criteria.

https://cloud.google.com/architecture/multi-cloud-database-management 31/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

Select
database

system
Partitioned without yes .
Select same or different
cross-database ' .
systems for all locations
dependency
Select same or different
no i systems for all locations
yes and compatible database
Asynchronous yes — replication system
L Is a database replication
unidirectional >
- system acceptable?
replication Select active-passive
no system
no
Select bi-directional
replicating system with
4 yes conflict resolution or
yes active-active system
Synchronized o Is conflict resolution
instances - acceptable?
Select active-active
no
system

The questions and answers in the decision tree are as follows:

* |s the data partitioned in different databases without any cross-database dependency?
 [f yes, the same or different database systems can be selected for each location.
 If no, continue to the next question.

 |s asynchronous unidirectional replication required?
 |f yes, then evaluate if a database replication system is acceptable.

 If yes, select the same or different database systems that are compatible with
the replication system.

* If no, select a database system that can implement an active-passive
distribution model.

* If no, continue to the next question.
» Select a database system with synchronized instances.
 |Is conflict resolution acceptable?

 |f yes, select a bidirectional replicating database system or an active-active
database system.

https://cloud.google.com/architecture/multi-cloud-database-management 32/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

* If no, select an active-active system.

If more than one multi-cloud use case is implemented, an enterprise must decide if it wants to
use one database system to support all use cases, or multiple database systems.

If an enterprise wants to use one database system to support all use cases, the system with
the best synchronization is the best choice. For example, if unidirectional replication is required
as well as synchronized instances, the best choice is the synchronized instances.

The hierarchy of synchronization quality is (from none to best): partitioned, unidirectional
replication, bidirectional replication, and fully synchronized replication.

Deployment best practices

This section highlights best practices to follow when choosing a database for multi-cloud
application migration or development.

Existing database-management system

It can be a good practice to retain a database and not make changes to the database system
unless required by a specific use case. For an enterprise with an established database-
management system in place and that has effective development, operational, and
maintenance processes, it might be best to avoid making changes.

A cloud bursting use case that doesn't require a database system in the cloud might not need a
change of database. Another use case is asynchronous replication to a different deployment
location within the same cloud or to another cloud. For these use cases, a good approach is to
implement a benchmark and verify that the cross-location communication and that the cross-
location communication and latency satisfies application requirements when accessing the
database.

Database system as a Kubernetes service

If an enterprise is considering running a database system within Kubernetes as a service
based on StatefulSets (/kubernetes-engine/docs/concepts/statefulset), then the following factors
must be considered:

https://cloud.google.com/architecture/multi-cloud-database-management 33/36

https://cloud.google.com/kubernetes-engine/docs/concepts/statefulset

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

 |f the database provides the database model required by the application.

* Non-functional factors which determine how operationalization is implemented in a
database system as a Kubernetes service—for example, how scaling is done (scaling up
and down), how backup and restore are managed, and how monitoring is made available
by the system. To help them understand the requirements of a Kubernetes-based
database system, enterprises should use their experiences with databases as a point of
comparison.

» High availability and disaster recovery. To provide high availability, the system needs to
continue operating when a zone within a region fails. The database must be able to
failover fast from one zone to another. In the best case scenario, the database has an
instance running in each zone that's fully synchronized for an RTO and RPO of zero.

» Disaster recovery to address the failure of a region (or cloud). In an ideal scenario, the
database continues to operate in a second region with an RPO and RTO of zero. In a less
ideal scenario, the database in the secondary region might not be fully caught up on all
transactions from the primary database.

To determine how best to run a database within Kubernetes, a full database evaluation is a
good approach, especially when the system needs to be comparable to a system in production
outside of Kubernetes.

Kubernetes-independent database system

It's not always necessary for an application that's implemented as services in Kubernetes to
have the database running in Kubernetes at the same time. There are many reasons that a
database system needs to be run outside of Kubernetes, —for example, established processes,
product knowledge within an enterprise, or unavailability. Both cloud providers and cloud
partner-managed databases fit into this category.

It's equally possible and feasible to run a database on a compute engine. When selecting a
database system, it's a good practice to do a full database evaluation to ensure that all of the
requirements for an application are met.

From an application design perspective, connection pooling is an important design
consideration. An application service accessing a database might use a connection pool
internally. Using a connection pool is good for efficiency and reduced latency. Requests are
taken from the pool instead without the need for them to be initiated, and there's no wait for
connections to be created. If the application is scaled up by adding application service

https://cloud.google.com/architecture/multi-cloud-database-management 34/36

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

instances, each instance creates a connection pool. If best practices are followed, each pool
pre-creates a minimum set of connections. Each time another application service instance is
created for application scaling, connections are added to the database. From a design
perspective, because databases can't support unlimited connections, the addition of
connections has to be managed to avoid overload.

Best database system versus database system portability

When selecting database systems, it's common for enterprises to select the best database
system to address the requirements of an application. In a multi-cloud environment, the best
database in each cloud can be selected, and they can be connected to each other based on the
use case. If these systems are different, any replication—one-directional or bidirectional—
requires significant effort. This approach might be justified if the benefit of using the best
system outweighs the effort required to implement it.

However, a good practice is to consider and evaluate concurrently an approach for a database
system that's available in all required clouds. While such a database might not be as ideal as
the best option, it might be a lot easier to implement, operate, and maintain such a system.

A concurrent database system evaluation demonstrates the advantages and disadvantages of
both database systems, providing a solid basis for selection.

Built-in versus external database system replication

For use cases that require a database system in all deployment locations (zones, regions or
clouds), replication is an important feature. Replication can be asynchronous, bidirectional, or
fully synchronized active-active replication. Database systems don't all support all of these
forms of replication.

For the systems that don't support replication as part of their system implementation
replication, systems like Striim (http://www.striim.com) can be used to complement the
architecture (as discussed in Database migration (#database_migration)).

A best practice is to evaluate alternative database-management systems to determine the
advantages and disadvantages of a system that has replication built in or a system that
requires replication technology.

A third class of technology plays a role in this case as well. This class provides add-ons to
existing database systems to provide replication. One example is MariaDB Galera Cluster

https://cloud.google.com/architecture/multi-cloud-database-management 35/36

http://www.striim.com/
https://mariadb.com/kb/en/what-is-mariadb-galera-cluster/

8/3/2021 Multi-cloud database management: Architectures, use cases, and best practices

(https://mariadb.com/kb/en/what-is-mariadb-galera-cluster/). If the evaluation process permits,
evaluating these systems is a good practice.

What's next

Learn about hybrid and multi-cloud patterns and practices

(/architecture/hybrid-and-multi-cloud-patterns-and-practices).

e Read about patterns for connecting other cloud service providers with Google Cloud

(/architecture/patterns-for-connecting-other-csps-with-gcp).

e Learn about monitoring_and logging_architectures for hybrid and multi-cloud deployments

on Google Cloud (/architecture/hybrid-and-multi-cloud-monitoring-and-logging-patterns).

» Explore reference architectures, diagrams, tutorials, and best practices about Google
Cloud. Take a look at our Cloud Architecture Center (/architecture).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
(https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies

(https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2021-08-03 UTC.

https://cloud.google.com/architecture/multi-cloud-database-management

36/36

https://mariadb.com/kb/en/what-is-mariadb-galera-cluster/
https://cloud.google.com/architecture/hybrid-and-multi-cloud-patterns-and-practices
https://cloud.google.com/architecture/patterns-for-connecting-other-csps-with-gcp
https://cloud.google.com/architecture/hybrid-and-multi-cloud-monitoring-and-logging-patterns
https://cloud.google.com/architecture
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

