7/3/2021 Measure Cloud Spanner performance using JMeter

Measure Cloud Spanner performance using JMeter

Author(s): @shashank-google , @chbussler, @rlota, Published: 2021-06-30

Shashank Agarwal, Ravinder Lota, Christoph Bussler | Google
Contributed by Google employees.

Cloud Spanner is a fully managed, horizontally scalable, transactional, SQL-compliant database
service.

Before you migrate to Cloud Spanner, you might want to run performance tests to evaluate its cost
and latency. In this tutorial, you do performance testing with Cloud Spanner before making application
code changes and migrating data.

Apache JMeter is a popular open source tool for load testing. It includes scriptable samplers in JSR
223-compatible languages, such as Groovy and BeanShell. In this tutorial, you use the JDBC
Sampler, which can trigger queries and simulate transactions on databases.

This document demonstrates JMeter performance tests using an example Cloud Spanner schema.

You use JMeter to send DML (data manipulation language) commands to the database to test its
performance.

Costs

This guide uses billable components of Google Cloud, including the following:

o Compute Engine (for running JMeter)

e Cloud Spanner

Use the pricing_calculator to generate a cost estimate based on your projected usage.

Objectives

o Determine whether Cloud Spanner is suitable for an existing workload, before application code
changes.

o Write a performance test for your workload on Cloud Spanner using JMeter.
o Estimate the number of Cloud Spanner nodes needed (and therefore cost).
o Test the performance of frequent queries and transactions.

¢ Demonstrate the ability to scale horizontally.

o Explain optimizations needed for schema and SQL queries.

o Determine latency of select, insert, update, and delete operations with Cloud Spanner.

Use cases

Possible use cases for doing performance tests with JMeter:

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 119

https://github.com/shashank-google
https://github.com/chbussler
https://github.com/rlota
https://cloud.google.com/spanner
https://jmeter.apache.org/
https://cloud.google.com/products/calculator

7/3/2021 Measure Cloud Spanner performance using JMeter

¢ You want to consolidate current multi-sharded relational database management systems into
Cloud Spanner.

* You have a workload that varies with spikes of activity, and you need a database that scales to
meet the demand.

* You want to standardize on Cloud Spanner for different applications.

Limitations

You can't use JMeter to test non-JDBC Cloud Spanner client-side libraries like Python and R2DBC.
You can bypass the client library using underlying gRPCor REST APIs, but that is out of scope for this
document.

You can't test non-DML features like mutations and parallel reads (partitioned selects) using JDBC
Sampler. In such cases, you can embed custom Java code using JSR223 Sampler, but that is out of
scope for this document.

Even if you use JMeter performance tests, you should also do application-based performance tests
later.

Design considerations for Cloud Spanner performance tests

You run performance tests to understand application behavior. Consider the following factors when
deciding how to design and run tests that can answer your specific questions.
Transactions per second (TPS)

TPS metrics should be based on your application workload requirements, mostly to support the peak
load.

For example, 7,000 read operations per second, 4,000 insert operations per second, and 2,000
update operations per second comes to an overall rate of 13,000 transactions per second (TPS).
Query latency

You should establish expected response time for different DMLs as success criteria. This can be either
based on your business SLAs or current database response time in the case of an existing
application.

Sizing: Number of nodes

Sizing of the Spanner cluster depends on the data volume, TPS, and latency requirements of the
application workload.

CPU utilization is another important factor when deciding the optimal number of nodes.

You can increase or decrease the initial cluster size to maintain the recommended 45% CPU
utilization for multi-region deployment and 65% for regional deployment.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 2/19

https://cloud.google.com/spanner/docs/reference/rpc
https://cloud.google.com/spanner/docs/reference/rest
https://cloud.google.com/spanner/docs/modify-mutation-api
https://cloud.google.com/spanner/docs/reads#read_data_in_parallel
https://stackoverflow.com/questions/21266923/using-a-jmeter-jdbc-connection-in-java-code
https://cloud.google.com/spanner/docs/cpu-utilization

7/3/2021 Measure Cloud Spanner performance using JMeter
Test Cloud Spanner Autoscaler

Cloud Spanner Autoscaler is a solution to elastically scale Cloud Spanner. Use JMeter to simulate
workloads that vary with spikes of activity to tune autoscaling scaling parameters.

Preparing for tests

Before you begin writing performance tests, make the following preparations:

1. Identify top SQL queries. Determine the latency, frequency, and average number of rows
returned or updated for each of the top queries. This information will also serve as a baseline for
the current system.

2. Determine the Cloud Spanner region or multi-region deployment. Ideally, load should be
generated from Cloud Spanner’s leader region for minimum latency and best performance. For
more information, see Demystifying_ Cloud Spanner multi-region configurations.

3. Estimate the range of Cloud Spanner nodes required for the workload. We recommend that you
have at least 2 nodes for linear scaling.

4. Request quota so that you have enough surplus quota for Cloud Spanner nodes on a given
region or multi-region. Changes in quota can take up to 1 business day. Although it depends on
workload, asking for a quota of 100 nodes for a performance test can be reasonable.

Creating a Cloud Spanner schema

This section assumes that you are migrating an existing application from a common RDBMS database
such as MySQL, PostgreSQL, SQL Server, or Oracle.

For information about modeling your schema, see the schema design best practices.

Keep the following in mind:

o Cloud Spanner needs primary keys to be generated from the application layer. Also,
monotonically increasing primary keys will introduce hotspots. Using_a UUID can be a good
alternative.

e Use an interleaved table to improve performance where most (more than 90%) of the access is
using join to the parent table. Interleaving must be created from the start; you can't change table
interleaving after the tables have been created.

e Secondary indexes on monotonically increasing values (such as indexes on a timestamp) may
introduce hotspots.

e Secondary indexes can use storing_clauses to improve performance of certain queries.

» Use the STRING data type if you need to have greater precision than NUMERIC.

This example uses the database Singers, which is created with the following schema:

CREATE TABLE Singers (
SingerId STRING(36) NOT NULL,
FirstName STRING(1024),

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 3/19

https://github.com/cloudspannerecosystem/autoscaler
https://cloud.google.com/blog/topics/developers-practitioners/demystifying-cloud-spanner-multi-region-configurations
https://cloud.google.com/spanner/quotas#increasing_your_quotas
https://cloud.google.com/spanner/docs/schema-design
https://cloud.google.com/spanner/docs/schema-design#primary-key-prevent-hotspots
https://cloud.google.com/spanner/docs/schema-design#uuid_primary_key
https://cloud.google.com/spanner/docs/secondary-indexes#storing-clause
https://cloud.google.com/spanner/docs/storing-numeric-data#recommendation_store_arbitrary_precision_numbers_as_strings

7/3/2021 Measure Cloud Spanner performance using JMeter

LastName STRING(1024),
SingerInfo BYTES(MAX),
) PRIMARY KEY (SingerId);

CREATE TABLE Albums (
SingerlId STRING(36) NOT NULL,
AlbumId STRING(36) NOT NULL,
AlbumTitle STRING(MAX),
) PRIMARY KEY (SingerId, AlbumId),
INTERLEAVE IN PARENT Singers ON DELETE CASCADE;

CREATE TABLE Songs (

SingerId STRING(36) NOT NULL,
AlbumId STRING(36) NOT NULL,
TrackId STRING(36) NOT NULL,
SongName STRING(MAX),

) PRIMARY KEY (SingerId, AlbumId, TrackId),
INTERLEAVE IN PARENT Albums ON DELETE CASCADE;

Set up JMeter

JMeter provides a GUI for easy development of tests. After tests are developed, use the command

line to run the JMeter tests. You can create a VM (in the same region as Cloud Spanner’s Leader) with

the GUI enabled, so the same VM instance can be used for development and execution of tests.

You can use a local workstation for test development, too. Don't use a local workstation to run
performance tests, because network latency can interfere with the tests.

Installation

1. Download and install JMeter 5.3 or higher, which requires Java 8 or higher.

2. Install Maven, which is used to download Cloud Spanner client libraries.

3. In a command shell, go to an empty directory, where you will keep JMeter dependencies.

4. Download the Cloud Spanner JDBC library and dependencies:

mvn dependency:get -Dartifact=com.google.cloud:google-cloud-spanner-jdbc:RELEASE -Dmav

5. Move the downloaded JAR files into a folder for JMeter to load in its classpath:

Linux:

find . -name *.jar -exec mv '{}' . \;

Windows:

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test

4/19

https://jmeter.apache.org/download_jmeter.cgi
https://maven.apache.org/install.html

7/3/2021 Measure Cloud Spanner performance using JMeter

for /r /Y %x in (*.jar) do copy "%x" .\

Set up authentication for JMeter

JMeter uses Cloud Spanner JDBC client libraries to connect. It supports various authentication
mechanisms, including service accounts. For simplicity, this example uses application default
credentials. For detailed steps, see the Cloud Spanner setup documentation.

In summary, you need to set up gcloud and run the following command to store credentials locally:

gcloud auth application-default login

JMeter basics

JMeter is a highly configurable tool and has various components from which you can choose. This
section provides a basic overview of how to create a JMeter test along with some minimal
configurations that you can use as a base for your tests.

JMeter test plan

JMeter has a hierarchical structure to the tests, with a top node called the test plan. It consists of one
or more thread groups, logic controllers, sample generating controllers, listeners, timers, assertions,
and configuration elements. Because a test plan is the top-level configuration element, saving a test
plan to disk also saves all nested objects, and the resulting file is saved with a .jmxfilename extension.

For simplicity, it's sufficient to have the top-level test plan contain a single thread group, which in turn
contains one or more samplers. There can be multiple samplers (and other components) within a
thread group; each is executed serially per thread.

Test plans and thread groups can also have configuration elements such as a JDBC connection or
CSV data reader. Configurations can be shared with child nodes.

Configuring connection parameters

As shown in the following screenshot, within each JMeter test, you need to provide connection
parameters, which are used by the JDBC library to connect to Cloud Spanner.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 5/19

https://github.com/googleapis/google-cloud-java#authentication
https://cloud.google.com/spanner/docs/getting-started/set-up
https://jmeter.apache.org/usermanual/test_plan.html

7/3/2021

Measure Cloud Spanner performance using JMeter

oc00:06 A\ 0 0/10 &) &

Value

[] @ Spanner Initial Load.jmx (| t) - Apache JMeter (5.4.1)
1 ¥ " =
@ ad £ o += =% »h» v =B
¢ a Bpanner Initial Load
. |DBC Connection Test Plan
& <0 Insert Data Name: Spanner Initial Load
o= 4 Singer insert Comments:
¢ =z Loop Controller
o= #* Album insert
¢ =z Loop Controller MHame:
& & Song insert project_id OO0
d instance SO
dby AN
Aggregate Report
connections 1000
grpe_channel 10
TSers TS PIUSers, 10)}
N rations §1__Plinerations, 100)]
Detall Add frem Clipboard Delete up

__| Run Thread Groups consecutively (l.e. one at a time)

¥ Run tearDown Thread Groups after shutdown of main threads

__| Functional Test Mode (i.e. save Response Data and Sampler Data)

Selecting Functional Test Mode may adversely affect performance.

Add directary or jar to classpath

[lecation o/ my | jars

4 1 [*] |4

e project_id: Google Cloud project ID

« instance: Cloud Spanner instance ID

o db: Cloud Spanner database name

Clear

Library

o connections: Cloud Spanner sessions. You should have 1 session per thread.

e grpc_channel: There can be a maximum of 100 sessions per gRPC channel.

The following parameters may not need to be changed; they will be passed from the command line,
and default values are used when testing from JMeter graphical user interface.

» users: Number of parallel threads per thread group, increasing stress on target.

« iterations: Number of times each thread should loop, extending duration of tests.

JDBC connection configuration

The parameters listed above are used for the JDBC connection configuration.

For a complete list of JDBC properties, see the JdbcDriver documentation.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test

6/19

https://cloud.google.com/spanner/docs/sessions
https://javadoc.io/doc/com.google.cloud/google-cloud-spanner-jdbc/latest/com/google/cloud/spanner/jdbc/JdbcDriver.html

7/3/2021 Measure Cloud Spanner performance using JMeter

aoe Spanner Initial Load.jmx - Apache JMeter (5.4.1)
S ad X\ De #=]%[rIk 1 % &% = H 000006 A o o/10 3 &
" a Spanner Initial Load
/- IDEC Connection JDBC Connection Configuration
§ U Insert Data Mame: IDBC Connection
& 7 Singer insert Comments:

% = Loop Controller
o Album insert

? = Loop Controller

&= 7 Song insert

Variable Name Bound to Pool
Variable Name for created pool: fonn_pool

Connection Pool Configuration
Max Number of Connections: §|connections]
Max Wait (msk 10000
Time Between Eviction Runs (msk 60000
Auto Cammit: True

il
. Aggregate Reporn

Transaction Isolation: DEFAULT
Preinit Pool: False

Init SOL statements separated by new line:

Connection Validation by Pool
Test While Idie:| True
Soft Min Evictable Idle Time({ms)| 5000
Validation Query:

Database Connectio

sidbe:cloudspanner: /projects/ S{project id}/instances/S{instance}/databases/§{dbPminSessions = §{connectiony
:com.google.cloud.spanner jdbe JdbeDriver

Connection Properties:

[DER !

The connection pool variable (conn_pool) is used by JDBC samplers to obtain a connection. The
JDBC connection URL is as follows:

jdbc:cloudspanner:/projects/${project_id}/instances/${instance}/databases/${db}?minSessions

You can use additional configurations such as READ_ONLY_STALENESSas needed.

Thread groups

A thread group represents a group of users, and the number of threads you assign a thread group is
equivalent to the number of users that you want querying Cloud Spanner.

The following screnshot shows an example thread group configuration:

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 7119

https://cloud.google.com/spanner/docs/use-oss-jdbc#session_management_statements

7/3/2021 Measure Cloud Spanner performance using JMeter

- NN] | Spanner Ini'-tial Luad.i;'l;;.[.

L' T

.-

()8 @ &30 | +|/= %> bk {

¢ @ Spanner Initial Load

¥ JDBC Connection : Thread Group
? l‘__ﬂjl Inﬂl‘t Diﬁ. Name: |||'|5E|1 Data
T £, Sronr Insent | Comments: |

¢ 1z Loop Controller
o= #* Album insert |-

¢ 'z Loop Controller|

o ¥ song insert |

ol View Results Tree :
- Aggregate Report i Thread Properties

Action to be taken after a Sampler error

® Continue () Start Next Thread Loop (0§

Number of Threads (users): |${users)

Ramp-up period (seconds): 1

Loop Count: [| Infinite |S{iterations)
[¥| Same user on each iteration
| | Delay Thread creation until needed

| | Specify Thread lifetime
Duration (seconds):

Startup delay (seconds):

If you want a thread group to run for a given duration, then you can change the beahvior as shown in
the following screenshot:

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 8/19

7/3/2021

00

Measure Cloud Spanner performance using JMeter

@@ &

E

R AL

Spanner Initial Load.jmx ([Users/agarwalsh/Pictures/Spanner Initia

o |o|d|

¢ & Spanner Initial Load
){ JDBC Connection
§ 'O Insert Data
o ¥ Singer insert
¢ = Loop Controller
o & Album insert
¢ = Loop Controller
o 4 Song insert
a View Results Tree
~ Aggregate Report

JDBC request sampler

Thread Group
Name: |Insert Data
Comments: |

Action to be taken after a Sampler error

® Continue Start Next Thread Loop Stop Thread

Thread Properties

Number of Threads qur{k |${users}]

Ramp-up period (seconds): |1

Loop Count: Infinite

Same user on each iteration

| | Delay Thread creation until needed

Specify Thread lifeti

Duration (seconds):

|${__P(duration, 300)}

Startup delay (seconds): |

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test

9/19

7/3/2021 Measure Cloud Spanner performance using JMeter

JDBC Request
Name: Singer insert

Comments: |
Variable Name Eound to Pool

Variable Name of Pool declared in JDBC Connection Eunfigural.'in
S50L Query
Query T\rp* Prepared Update Statement I

fatery

F insert into singers (singerid, firstname, lastname) walues (7,7,7)

Parameter values: ${singerid}, §{firstname}, §{lastname}
Parameter types: |VARCHAR,VARCHAR, VARCHAR
Variable names
Result variable name:
Query timeout (sk
Limit ResultSet:
Handle ResultSet: Store as String

You can send SQL queries with the JDBC Sampler. Using Prepared Select or Prepared Update is
recommended, because it has better performance on Cloud Spanner.

Listeners

You can add an aggregate report (or other types of reports) after all the thread groups. This will show
staistics from the JMeter graphical user interface (GUI) in real time for all of the samplers. However,
we don't recommend running performance tests in GUI mode, because the JMeter GUI can be slow.
You can use it for test development purposes, though.

We recommend running tests in command-line mode, which generates HTML reports with the
different JMeter reports.

Loading initial data into Cloud Spanner

Before you start doing performance tests, you need to initialize the database with seed data. We
recommend that you load the volume of rows in each table, representative of current production data
size.

Typically, you can use Dataflow jobs for importing_data from non-Cloud Spanner databases.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 10/19

https://cloud.google.com/spanner/docs/sql-best-practices#query-parameters
https://cloud.google.com/spanner/docs/import-non-spanner

7/3/2021 Measure Cloud Spanner performance using JMeter

However, sometimes you can't do that because of schema changes with Cloud Spanner. An
alternative is to mock seed data using JMeter.
How much data to load

Data loading prepares Cloud Spanner to create splits (shards) and distribute different nodes as
leaders for each split. For details, see Database splits.

The volume of data depends on the SQL queries for which you want to do performance tests. The
main focus is to load those tables that will be used by read or write queries. Ideally, the test data
should be similar in volume to production data. In addition, data might need to be modified to fit into a
potentially modified Cloud Spanner schema.

How to reset tests

Ideally, you should reset your database to the same seed data for comparison between multiple test
executions. You can use backup/restore (or export/import) to initialize each run to the same initial
dataset. The latter is better if different configurations are tested.

Using JMeter to mock seed data

Sometimes it is not simple to import existing data into Cloud Spanner. Mock data can be generated by
writing insert queries in JMeter.

Below is an example Spanner-Initial-Load.jmx used to load sample schema. You will need to update
connection parameters as described previously.
Spanner-Initial-Load.jmx

The Spanner-Initial-Load.jmxtest generates random data hierarchically into Singer, Album,
and Song tables. Each singer gets a random number of albums between 0 and 20. Similarly, 0-15
songs per album are generated. Parallel threads (users) are used to insert data concurrently.

You can run this JMeter test with the following command:

jmeter -n -t Spanner-Initial-Load.jmx -1 load-out.csv -Jusers=1000 -Jiterations=1000

Watch the CPU utilization of Cloud Spanner. Increase the number of nodes and JMeter’s parallel
threads (users) to increase the data generation rate. Increase the iterations count to increase
execution time.

Initial load should be done with randomly generated keys. Using monotonically increasing keys will
lead to write hotspots and cause a lengthy delay in populating the database.

Developing performance tests

Guidelines for developing performance tests:

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 11/19

https://cloud.google.com/spanner/docs/schema-and-data-model#database-splits
https://github.com/GoogleCloudPlatform/community/tree/master/tutorials/jmeter-spanner-performance-test/Spanner-Initial-Load.jmx
https://cloud.google.com/spanner/docs/cpu-utilization#recommended-max

7/3/2021 Measure Cloud Spanner performance using JMeter

o Target to configure performance tests such that they generate transactions per second (TPS)
similar to the current database (baseline). Later in the execution phase, increase the number of
users (load) to simulate scaling.

o Prefer to have only one transaction per thread group. This will allow you to throttle load for that
transaction independent of other transactions. A transaction could be composed of single or
multiple sql queries. For example, it is fine to have just a single select/insert/update query in a
thread group, if that compares evenly with a transaction in your current database (baseline).

e Determine the transactions per second (TPS) in the current database (baseline) for each DML
operation and throttle load accordingly. In other words, sometimes even with one user in the
thread group, there is far higher TPS than baseline. If so, then use timers to introduce delay, as
needed to tone down the TPS close to baseline.

o Use parameterized queries for better performance.

e Tune SQL queries by adding relevant hints as needed.

e Cloud Spanner interface in the Cloud Console can lead to longer query execution time,
especially when result size is large. You can use gcloud or Spanner CL| as alternatives to
time SQL queries accurately.

o Use query execution plans to identify query bottlenecks and tune them accordingly.

o Add indexes as needed to improve performance of select queries.

» Use FORCE_INDEX hint for all queries as it can take upto a few days before the query
optimizer starts to automatically utilize the new index.

e Use GROUPBY_SCAN_OPTIMIZATION to make queries with GROUP BY faster.

» Use join hints to optimize join performance, as needed.

 If needed, export query parameter values into a CSV file. Then use CSV Data Set Config in
JMeter to supply parameters from the CSV file.

Sample JMeter test for Singers schema

Assume that the following baseline needs to be performance-tested:

) Baseline
SnoTransactions TPS
1. select AlbumTitle from Albums where Singerld = ? and AlbumTitle like ? 7000

select Singerld, Albumld, Trackld, SongName from Songs where Singerld = ? 5000
and Albumld = ? order by SongName

3. update Singers set Singerinfo = ? where Singerld = ? 1000

Below is the sample JMeter test to simulate the above load. You will need to update connection
parameters as discussed previously.

Spanner-Perf-Test.jmx

Spanner-Perf-Test.jmxuses a CSV configuration to get Singerld and Albumld parameters.

The following are the first few lines, for example:

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 12/19

https://jmeter.apache.org/usermanual/component_reference.html#timers
https://cloud.google.com/spanner/docs/sql-best-practices#query-parameters
https://cloud.google.com/spanner/docs/query-syntax
https://cloud.google.com/sdk/gcloud/reference/spanner/databases/execute-sql
https://github.com/cloudspannerecosystem/spanner-cli
https://cloud.google.com/spanner/docs/query-execution-plans
https://cloud.google.com/spanner/docs/secondary-indexes
https://cloud.google.com/spanner/docs/query-syntax#table-hints
https://cloud.google.com/spanner/docs/query-syntax#join-hints
https://jmeter.apache.org/usermanual/component_reference.html#CSV_Data_Set_Config
https://github.com/GoogleCloudPlatform/community/tree/master/tutorials/jmeter-spanner-performance-test/Spanner-Perf-Test.jmx

7/3/2021 Measure Cloud Spanner performance using JMeter

"singerid","albumid"

"0002a2ad0-30e9-4eae-blaB-952ebec9de76", "328elb6f-a449-42d1-bc8b-3d6ba2615d2f"
"00022ad0-30e9-4eae-blaB-952ebec9de76","43b1011e-d40d-480b-96a2-247636Fc7c96"
"0002a2ad0-30e9-4eae-blav-952ebec9de76", "5¢c64c8f2-0fad-4fe7-9c3a-6e5925e3cbcd”

This CSV can be created using a SQL query such as the following, which randomly selects data from
the album table:

SELECT SingerId,AlbumId FROM Albums TABLESAMPLE BERNOULLI (©.1 PERCENT) limit 10000;

There are three thread groups with the transaction as defined previously, as shown in the following
screenshot:

? & Epanner Performance Test|

J% JDBC Connection
)% CSV Read

o~ Q> Search Albums

o- ¢ List songs

o- «&° Update singer
off View Results lree
~. Aggregate Report

The CSV Read configuration reads data from a CSV file that is being used in all three thread groups.
All three thread groups are very similar. The following screenshot shows the Search Albums thread
group.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 13/19

7/3/2021
& Spanner Performance Test

Measure Cloud Spanner performance using JMeter

% JDBC Connection Thread Group
GV Read Name: Search Albums
7o Comments.

¢/ Search Album
= _ User Parameters

@ orsan Tirougnpis Timer ® Continue _ Start Next Thread Loop Stop Thread
=T ST Songs

Action to be taken after a Sampler error

o 405 Update singer — .
o View Results Tree read Properties

-~ Aggregate Report

Number of Threads (usersk |${users}

Ramp-up period (secondsk |5

Loop Count: v] Infinite
¥] Same user on each iteration
| Delay Thread creation until needed

v] Specify Thread lifetime

Duration (seconds)k ${duration}

Startup delay (seconds):

It is configured to use users and duration parameters, which can be passed by command line. It
contains one JDBC Sampler Search Album, which depends on User Parameters and Timer.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 14/19

7/3/2021 Measure Cloud Spanner performance using JMeter

% & Spanner Performance Test

 1DBC Connection JDBC Request

2% C5V Read Name: Search Album
9 -u-Siarch Albums ———

t

Variable Name Bound to Pool
Variable Name of Pool declared in JDEC Connection Configuration] conn_pool

= _ User Parameters
Q_) Constant Throughput Timer

& 4O List songs SOL Query
& 4 Update singer Query Typg: Prepared Select Statement
W R Query
-l 1| select AlbumTitle from Albums where SingerId = 7 and AlbumTitle Llike ?
 Aggregate Report

Parameter values: §{singerid}, §{ute}
Parameter types: VARCHAR VARCHAR
Variable names:

The Search Album JDBC sampler as shown above triggers an SQL query as shown in screenshot
above. It populates query parameters using variable as follows:

${singerid} -- obtained from CSV Read
${title} -- obtained from User Parameters

A timer is configured to throttle load to meet the requirement. It needs to be supplied with transactions
per minute, so 7000 TPS * 60 = 420,000 transactions per minute.

8 Perf Test : .
L);aj’;‘:(‘; C‘:m::’::::e € Constant Throughput Timer

< CSV Read Name: [Constant Throughput Timer

¢ <> Search Albums :
¢/ Search Album

= _ User Parameters

Comments: |

Delay before each affected sampler

Target throughput (in samples per minut¢):/420000.0 1
> nstant Throughput Timer
g O |Co e Calculate Throughput based o&all active threads in current thread group
o= Q> List songs :
o= «0° Update singer :
o View Results Tree

-~ Aggregate Report

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 15/19

7/3/2021

Measure Cloud Spanner performance using JMeter

Executing performance test

Guidelines for executing the tests, for best results:

Execute tests from the same Cloud Spanner region for a regional spanner and “leader” region
for multi-region Cloud Spanner instances.

Run JMeter tests from the command line, not GUI mode.
Run each test at least 3 times to even out random differences.
Warm up Cloud Spanner before running tests (as in production).

Run tests for long enough such that TPS is stable. It depends on the workload, for example
having at least a 15 minute test can ensure that enough ramp-up time is available.

Generate load on Cloud Spanner, because scaling Cloud Spanner can take some time to
stabilize.

Ensure that the client machine running JMeter has enough resources. JMeter is a CPU-intensive

process.

Increase JMeter’s jym heap size, if needed.

Run multiple JMeter instances in parallel, or use remote testing for horizontal scaling of JMeter.

Often, a single instance of JMeter is not able to produce enough load on a multi-node Cloud
Spanner instance.

Ensure that Cloud Spanner is above the recommended CPU threshold: 65% for regional and
45% for multi regional.

Plan for long-running tests (2 hours or more) to verify sustained performance. This is because

Cloud Spanner can start system tasks, which may have performance impact.

Sample test execution

Run the test:

jmeter -n -t Spanner-Perf-Test.jmx -1 test-out.csv -Jusers=100 -Jduration=900

You can modify the number of users and duration as needed.

The test generates a test-out.csv file with raw statistics. You can use the following command to create

a JMeter report from it:

jmeter -g test-out.csv -o [PATH_TO_OUTPUT_FOLDER]

Collecting performance test results

You gather performance metrics after the test execution.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test

16/19

https://www.blazemeter.com/blog/9-easy-solutions-jmeter-load-test-%E2%80%9Cout-memory%E2%80%9D-failure
https://jmeter.apache.org/usermanual/remote-test.html
https://cloud.google.com/spanner/docs/cpu-utilization#recommended-max
https://cloud.google.com/spanner/docs/cpu-utilization#task-priority
https://jmeter.apache.org/usermanual/generating-dashboard.html#report_only

7/3/2021 Measure Cloud Spanner performance using JMeter

1. Validate that the test ran according to the requirements defined earlier.

2. Compare results with your success criteria.

We recommend capturing these performance metrics from Spanner monitoring rather than the JMeter
report. JMeter provides this information with added latency for each query execution depending on
how busy the VM has been, so it's not the true measure of Spanner response time.

Based on the success criteria, the most important metrics are the following:

1. Operations per second (read and write)
2. Latency at 50th and 99th percentile for different types of operations
3. CPU utilization

The Spanner monitoring dashboard provides this information aggregated at the minute level.
For custom dashboards or metrics that are not available in standard dashboards, you can use
the Metrics Explorer.

Operations per second

The Spanner dashboard provides information about the read and write operations running on the
Spanner instance. For example, the following chart shows a total TPS of 43744 per second for the
selected duration.

Operations per second ~ ra
Function
Read / write -
s
® Read 38,261/s
® Write 5483/s
Read errors 0 30,000 5
Write errors 0

—_———

10:44 10:45 10:46 10:47 10:48 10:49 10:30 10:51 10:52 10:53 10:54 10:55

@ Read: 38260.65/s @ Read errors: 0 @ Write: 5483.48/s @ Write errors: 0

Latency

An example of read and write operations latency at 50th and 99th percentile is captured in the
following chart.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 17/19

https://cloud.google.com/spanner/docs/monitoring-cloud#create-charts

7/3/2021 Measure Cloud Spanner performance using JMeter

Latency @ =~ I3 :
Function
Read / write -
10:44 10:45 10:46 10:4 10:48 10:49 1050 10:54 10:55
@ Write - 99th percentile
@ Read - 50th percentile: +ins @ Read - 99th percentile: -~

Read - 99th percentile
@ Write - 99th percentile: © ~ < Write - 50th percentile

@ Read - 50th percentile

Latency metrics have been redacted in the preceding screen shot.

Note: You can also get 95th percentile latency from Cloud Monitoring

You can use introspection tools to investigate issues with your database. Use query statistics to know
which queries are expensive, run frequently, or scan a lot of data.

Sometimes writes can be competing and can result in higher latency. You can check the lock
statistics to get clarity on wait time and higher latency and apply best practices to reduce the lock time.

CPU utilization

This metric is important for understanding whether the cluster is under-utilized or over-utilized.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 18/19

https://cloud.google.com/spanner/docs/monitoring-cloud
https://cloud.google.com/spanner/docs/introspection
https://cloud.google.com/spanner/docs/introspection/lock-statistics
https://cloud.google.com/spanner/docs/introspection/lock-statistics#applying_best_practices_to_reduce_lock_contention

7/3/2021 Measure Cloud Spanner performance using JMeter

Monitoring 10:43 AM - 10:55 AM v

CPU utilization - high priority @ =

Recommended max per instance (65%) *\\

@ All database high priority tasks 69.66%

All instance high priority tasks 69.66%

10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51

10:52 10:53 0:54 10:55

@ All database high priority tasks: 69.66% @ Allinstance high priority tasks: 69.66%

This information can be used to further optimize the cluster size. For details, seelnvestigating_high
CPU utilization.

Cleaning up

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial, you
can delete the project:

1. In the Cloud Console, go to the Projects page.
2. In the project list, select the project that you want to delete and click Delete.

3. In the dialog, type the project ID, and then click Shut down to delete the project.

What's next

¢ Cloud Spanner schema and data model

o Schema design best practices

o Demystifying_Cloud Spanner multi-region configurations

¢ |ntrospection tools

» Handling auto-incrementing_keys data migration

e Try out other Google Cloud features for yourself. Have a look at our tutorials.

https://cloud.google.com/community/tutorials/jmeter-spanner-performance-test 19/19

https://cloud.google.com/spanner/docs/introspection/investigate-cpu-utilization
https://console.cloud.google.com/iam-admin/projects
https://cloud.google.com/spanner/docs/schema-and-data-model
https://cloud.google.com/spanner/docs/schema-design
https://cloud.google.com/blog/topics/developers-practitioners/demystifying-cloud-spanner-multi-region-configurations
https://cloud.google.com/spanner/docs/introspection
https://cloud.google.com/community/tutorials/db-migration-spanner-handle-increasing-pks
https://cloud.google.com/docs/tutorials

