
JANUARY/FEBRUARY 2008 1089-7801/08/$25.00 © 2008 IEEE Published by the IEEE Computer Society 75

Peering
Editor : Char les Petr ie • pe t r i e @ stanford .edu

Is Semantic Web Technology
Taking the Wrong Turn?
Christoph Bussler

D evelopers create Semantic Web technolo-
gies (SWTs) not only to overcome the syn-
tactic, semantic data heterogeneity problem

at design time but also to support uniform agree-
ments on the meaning of data and processes at
run time. As defined in the landmark article in
the space1 (and reprised in IC’s Peering depart-
ment in 20072), the greatest promises of the Se-
mantic Web and SWTs are

seamless interactions among agents (peo-
ple and services) based on reliable com-
munications and uniform data and process
semantics;
a solution to the heterogeneity and interop-
erability problem in data and processes via
dynamic and automatic discovery and inte-
gration; and
semantic correctness and dependability (in-
cluding trust and explanation of reasoning
results).

That article clearly outlines the data- and process-
 integration challenges between humans and
computerized services in the form of a medical
scheduling process for organizing regular doc-
tor visits involving a patient and her family. In
addition to these requirements, Tim Berners-Lee,
Jim Hendler, and Ora Lassila outlined nonfunc-
tional requirements such as trust or the on-de-
mand explanation of formally derived reasoning
results.1 They put forth the Semantic Web and
its related technologies as a possible solution to
the outlined requirements — first and foremost,
the problem of semantically correct and consis-
tent data and process integration.

In response to their article, a whole academic
research field emerged, complete with annual
conferences, and industrial software develop-

•

•

•

ment began encompassing research results into
new commercial products (see the “Ongoing
Work in Semantic Web Technologies” sidebar).
Equally impressive is the fact that companies
and research funding organizations, such as
Darpa, the European Commission, and vari-
ous Asian funding organizations have invested
significant effort and money into research and
industrial projects. In all, this upcoming com-
puter science field looks very successful, and its
future seems bright.

Yet, the results are much less impressive
in terms of actual applications. An architec-
tural analysis suggests why and that SWT is
headed for a disaster unless there is a change
of course.

Requirements for
Semantic Web Technology
One way to take stock of an area of computer
science’s overall achievement is to categorize ac-
ademic research results and industrial technol-
ogy products and plot them on a timeline. If we
followed this approach with the Semantic Web
field, the visible progress would be impressive.
The number of industrial technologies, stan-
dards, publications, research prototypes, work-
shops, and conferences in the space is vastly
increasing (apparently almost exponentially),
as are the number of ontologies being discussed,
developed, and supposedly used in real settings
and applications for managing real information.

However, this approach defines progress in
terms of the work achieved (the more, the mer-
rier) rather than the degree to which real-life
problems are being solved (Berners-Lee, Hendler,
and Lassila emphasized the real problem space
for solving real problems1). In this context, the
goal isn’t simply to solve the problems (which

Peering

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

could be achieved via “conventional”
software technologies) but rather to
solve them at least a magnitude “bet-
ter” with SWT.

On a higher level, the core prob-
lem in the medical patient example
is about distributed calendar sched-
uling. Three people must coordinate
their calendars (two family members
and a physician) to schedule treat-
ment for a third family member. As
the first two take the third to and
from the physician’s practice, driv-
ing distance and time of day play
big roles. Moreover, the family can
consider only physicians within its
healthcare provider’s network.

As derived from the article, SWT’s
major concrete requirements are

data interpretation and mediation
(between the calendars of the
family, physicians, and hospitals,
as well as routing planners and
traffic-monitoring systems);
process interpretation and media-
tion (between calendar systems,
hospital systems, and public traf-
fic information systems);
data storage and retrieval (calen-
dar state, physician quality rat-
ings, and traffic patterns);
business logic execution based on
data (selecting appropriate times
based on availability constraints
and physicians’ eligibility); and
agent interoperability (all the in-
volved systems have to interact).

In principle, the example calls
for a software application that works
with any number of calendar sys-
tems of any make and model and
any number of software applications
used by physicians, hospitals, and
healthcare providers, and it should
be available to everyone with Inter-
net access — not just in the US, but in
all countries. And, of course, traffic-
monitoring and status-reporting sys-
tems must also be integrated. In this
sense, the system must be extremely
open, extensible, and dynamically

•

•

•

•

•

changeable forever, which implies
that the requirements implementation
doesn’t have a fixed end (as in many
software development projects). This
software application’s enormous com-
plexity becomes clearer as we con-
sider all the possible combinations.

With my background in agents,
enterprise application integration
(EAI), and business-to-business (B2B)
technologies, I’ve attempted to mea-
sure SWT’s success by analyzing the
overall situation in the context of
a concrete application example. In
contrast to the standard approach in
research publications, I use the re-
quirements stated by the original au-
thors, although I take a much more
engineering-oriented viewpoint.

Conventional
Application Architectures
Interactive software applications sup-
porting end users like those dis-
cussed here generally have at least
seven architectural layers (of course,
variations exist):

graphical user interfaces (GUIs)
in Web browsers,
user interface logic drivers,
business processes,
business logic implementations,
business rules constraining valid
operations,
a persistence layer, and
storage systems for storing and
recalling data.

These seven layers execute any suc-
cessful user request on the GUI, and
any response travels through them
all on the way back to the GUI — 14
layers in total.

Developers can use many cur-
rent software technologies to imple-
ment these layers (see the sidebar
for examples). In our context, it’s
noteworthy that each of these tech-
nologies has a data-representation
as well as data-interpretation model,
and a notion of execution in terms
of handling requests at runtime.

•

•
•
•
•

•
•

These properties are independent of
the particular business problem to
be solved. Yet, even before business-
specific requirements and challenges
arise, merely using these technologies
presents a heterogeneity challenge
because the layers must interact with
each other. Consequently, the data
structures must be mapped or trans-
formed between the layers when ex-
ecuting end-user requests.

In addition to the seven layers,
GUI-based end-user applications fea-
ture two distinct cases of remote inte-
gration3 — intra-enterprise integration
(also called EAI) of (end-user) appli-
cations, and inter-enterprise (or B2B)
integration. The distributed calendar
scheduling example covers all aspects
of industrial software application ar-
chitecture, which makes it extremely
relevant in the context of SWTs.

In contrast to GUI-based appli-
cations, B2B applications use a B2B
communication layer that knows
how to remotely communicate data
and processes. B2B communication
includes the seven layers at both
trading partners, and if a communi-
cation requires an acknowledgment
or return message, it must cross the
layers as well, bringing the overall
count to 28 layer crossings in a sin-
gle request–reply communication.

Integrating with
Conventional Architectures
SWT doesn’t propose a different ap-
plication architecture. Instead, it
proposes languages and technologies
that are intended to make the appli-
cation development process and in-
tegration efforts a lot simpler, faster,
and more reliable, especially in the
areas of data and process mediation
to achieve uniform semantic inter-
pretation.1 For good reason, SWT
doesn’t propose replacing core tech-
nologies either; from a pragmatic
viewpoint, trying to replace existing
database technologies, programming
languages, or communication infra-
structure would be futile.

JANUARY/FEBRUARY 2008 77

Is Semantic Web Technology Taking the Wrong Turn?

Yet, for SWT to have an impact,
it must be integrated somewhat with
current core computing technologies.
Semantic Web services (SWSs) are a
good example. SWS technology aug-
ments, rather than trying to replace,
commercial Web service technology.
For example, developers can describe
Web service interface definitions via
semantic languages such as OWL-S
(www.daml.org/services/owl-s/) or
the Web Service Modeling Language
(WSML; www.wsmo.org/wsml/) rath-
er than the Web Services Description
Language (WSDL; www.w3.org/TR/
wsdl/) — or in conjunction with it, as
in Semantic Annotations for WSDL
(SAWSDL; www.w3.org/2002/ws/
sawsdl/). Although we can seman-
tically describe Web service inter-
faces, we (still) implement the Web
services using existing (nonseman-
tic) programming languages such
as Java or C#.

Database technology presents a
slightly different approach. Oracle
implemented the Resource Descrip-
tion Framework (RDF) model directly
into its relational database manage-
ment system (RDBMS) as standard
database technology, whereas others
have proposed stand-alone database
systems, such as Jena (http://jena.
sourceforge.net) or Sesame (www.
openrdf.org). In either approach,
some data will continue to be stored
outside RDF structures and RDF da-
tabases for some time to come. RDF
databases represent all data as triples
— in Oracle, it’s possible to collocate
data in relational form as well as in
triples. In contrast, SWT has yet to
touch user interface technology. Nei-
ther process nor workflow execution
environments use SWT at all at this
point. The only available mecha-
nism is to refer to data (only) using
SWT. For example, developers can
use the RDFa standard (www.w3.org/
TR/xhtml-rdfa-primer/) to work with
HTML pages and XML documents
with embedded RDF statements.

To clarify the significance of this

approach to integrating SWT with
“conventional” software technol-
ogy, let’s look into the details of a
Web service invocation, using SWS
as an example in describing the in-
terfaces. Let’s assume that one SWS
invokes another, and to make things
a bit more interesting, let’s assume
that this is a remote invocation in
which the communication data is
represented in RDF. Let’s say that
the invoking SWS is implemented in
Java and the invoked SWS is imple-
mented in Lisp, which means that
the invoking SWS must mediate be-
tween Java and RDF and the invoked
SWS must mediate from RDF to Lisp
after the remote data transport. The

mediation includes a syntactic as
well as a semantic re-representation
because the invoked SWS’s interface
has a separate definition of its inter-
faces. In total, three languages are
involved and two mediations occur
when crossing this one layer (for one
direction of invocation!). Because
this is the general case for any layer,
the extreme but not unlikely case
with the 28 layers I mentioned ear-
lier would lead to 56 mediations, as
well as up to 28 language shifts in-
volving 14 interface definitions. Al-
though each communication partner
has to worry about “only” 14 layer
crossings, 7 interface definitions,
and 28 mediations, achieving the
requirements stated in the Scientific
American article remains very hard.
(And this discussion doesn’t even
consider the case in which differ-
ent services are defined in different
SWS languages.)

In summary, SWT today either
works as wrapping technology to en-
able semantic interfaces for layers
or introduces additional component

technology alongside existing compo-
nents, as with databases. Additional
component technologies compli-
cate the challenges as more “mov-
ing parts” must be integrated in
an EAI sense, thus increasing the
number of interfaces and mediations
required. Additional component
technology also turns individual
layers into heterogeneous imple-
mentations. When SWT is used as
wrapping technology, the heteroge-
neity problem sharply increases the
number of data models that require
additional mediation. Anyone who
doubts that integrating heteroge-
neous systems becomes more diffi-
cult with SWT should try the simple

but real examples of the Semantic
Web Services Challenge (www.sws
-challenge.org).

Disaster Analysis
Many recent publications start by
assuming a homogeneous environ-
ment (language, ontology). They of-
ten begin with statements such as,
“we developed an ontology that we
use exclusively,” “we assume OWL-S
as the SWS language,” “all data is
stored as triples in an RDF store,”
and so on. Rarely (if ever) do au-
thors extend one or more existing
ontologies or assume that services
on the Web can be described in any
implemented (Semantic) Web ser-
vice interface-definition languages.
Indeed, doing so would tremendous-
ly increase the heterogeneity and
mediation. Although SWT seeks to
address the heterogeneity problem,
researchers generally try instead
to avoid it by making assumptions
or putting constraints in place that
give them homogeneous environ-
ments. A very noteworthy exception

This application’s complexity becomes clear
as we consider all possible combinations.

Peering

78 www.computer.org/internet/ IEEE INTERNET COMPUTING

is the Semantic Computing Research
Group’s public sector work in Fin-
land, where the whole country works
on a uniform ontology across all its
industries and companies!4

A second observation is that the
original Semantic Web article1 as-
sumed at least a homogeneous data
representation format in RDF (in
conjunction with XML). In addition,
the authors assumed that all inter-
acting agents would comply with
this constraint, at least at their in-
terfaces. Although this approach
wouldn’t reduce the number of medi-
ations, it would at least create a com-
mon format used between layers and
inside applications, as well as across

those in the EAI or B2B sense. This
fits the W3C’s “layer cake” vision in
which languages are built on top of
each other (extending rather then
redefining) in the sense that they
increase expressiveness without cre-
ating heterogeneity. In a sobering
follow-up article, Berners-Lee, Nigel
Shadbolt, and Wendy Hall analyzed
the progress of the plans set out in
the original article, reiterating the
goals and emphasizing the need for a
more structured architecture as well
as data (and process) standards.5 The
role of data standards is notewor-
thy as their uptake across the layers
would begin to significantly reduce
required data mediations.

How could technology that set
out with the best intentions to sim-
plify the integration and interoper-
ability problem actually lead to the
opposite? One possible answer is
that the research community and in-
dustry took a wrong turn in divid-
ing the whole space according to the
classical lines of distinction between
layers and components in software
architectures, as well as the classical
academic research fields. For exam-
ple, the database community started
to apply SWT to databases; the Web
service community did the same to
its work; and so on. Each community
has thus extended its own technolo-
gy, causing a disaster for software ar-

Ongoing Work in Semantic Web Technologies

The number of research results, software products, and
conferences in the area of Semantic Web technologies

(SWT) are clear evidence of significant efforts. Substantial
development is already evident in formal Semantic Web lan-
guages, including the Web Ontology Language (OWL; www.
w3.org/2004/OWL/) and Resource Description Framework-
Schema (RDFS; www.w3.org/TR/rdf-schema/).

We’ve seen additional advances in the areas of semantic
libraries (JeromeDL; www.jeromedl.org), ontology model-
ing and management (KAON2; http://kaon2.semanticweb.
org), social networks (the Friend-of-a-Friend project ; www.
foaf-project.org), and databases (Jena, http://jena.source
forge.net; and Oracle, www.oracle.com/technology/tech/
semantic_technologies/).

SWT efforts also include the Semantic Web Rule Language
(SWRL; www.w3.org/Submission/SWRL/), the SPARQL Query
Language for RDF (SPARQL; www.w3.org/TR/rdf-sparql-query/),
reasoners (http://en.wikipedia.org/wiki/Semantic_Reasoner),
semantic search (Swoogle, http://swoogle.umbc.edu; Hakia,
www.hakia.com; and Powerset, www.powerset.com), and on-
tology mediation (J. Euzenat and P. Shvaiko, Ontology Matching,
Springer-Verlag, 2007).

Semantic Web services are particularly popular research
and development topics:

DAML Services (DAML-S; www.daml.org/services/owl-s/);
Web Service Modeling Ontology (WSMO; www.wsmo.
org); and
Semantic Annotations for WSDL (SAWSDL; www.
w3.org/2002/ws/sawsdl/).

Numerous SWT-related conferences cover the topic space.

•
•

•

The recently introduced First IEEE International Conference on
Semantic Computing (http://icsc2007.eecs.uci.edu) added the
dimensions of natural language processing and multimedia ob-
ject processing to the semantic mix. The industrial Semantic
Technology Conference series (www.semantic-conference.
com) focuses on the semantic software technology industry,
and many researchers and developers show their work there.
Several ongoing academic conferences also cover research
work and achievements:

European Semantic Web Conference (www.eswc2008.org);
International Semantic Web Conference (http://iswc.
semanticweb.org); and
Asian Semantic Web Conference (www.sti2.org/
events/events).

Current implementation technologies for convention-
al industrial software application architectures include the
following:

J2EE (http://java.sun.com/javaee/);
Apache Java Persistence API (OpenJPA; http://openjpa.
apache.org);
Java (http://java.sun.com);
Jess (http://herzberg.ca.sandia.gov/jess/); and
JavaServer Faces (http://java.sun.com/javaee/javaserverfaces/).

Both the SWT and implementation-technology communities are
showing progress in achieving their own agendas, but relatively
little cooperation exists between the two. Working from a com-
mon framework could help bring them closer together and begin
to realize some of the promise of the Semantic Web vision.

•
•

•

•
•

•
•
•

JANUARY/FEBRUARY 2008 79

Is Semantic Web Technology Taking the Wrong Turn?

chitects and engineers who must use
the results from several communi-
ties in building software applications
that are hosted and interconnected.
Some industrial efforts are currently
focusing a little beyond the classical
layers,2 but a lot more is necessary.

O ne possible direction for se-
mantic technology research and

development is to continue develop-
ing point solutions for individual
areas and technology components.
Straight ahead from here leads to
more SWT languages, hard-to-in-
tegrate ontologies, and technology
components such as libraries, RDF
databases, and logic reasoners. Those
who build real-world applications
will have to integrate all those ele-
ments to use them holistically, thus
leaving the integration problem un-
resolved. As this approach increases
the effort required in every part of
the software engineering life cycle,
chances are that developers will
adopt the SWT only for very specific
areas and solutions, rather than for
general use across all domains in
which computing is applied.

One possible turn would be to
start addressing the problem of data
and process heterogeneity, not only
among systems but also among the
layers within them to reduce or
eliminate the number of mediations
necessary. Rather than looking at
SWT as interface-wrapping technol-
ogy, it seems appropriate to make it
the foundation for all aspects of in-
formation technology and scientific
computing. In concrete terms, one
way to eliminate mediations when
crossing layers is to ensure that data
objects are encoded in a single for-
mat (such as RDF) and not mapped
between layers but rather handed
over from layer to layer without
change. This, in turn, would chal-
lenge the various technologies used
for implementing these layers to be-
come totally SWT aware.

Another handy tool would be a se-
mantic programming language with
language primitives that enable the
direct processing of semantic data,
thus avoiding representation in clas-
sical programming language data
types. Finally, efforts like those in
Finland4 can help ensure that the data
interpretation problem is addressed
in a serious way, across industries
and governments. The ultimate ques-
tion is whether the SWT community
can step up to this challenge.

Acknowledgments
This article benefited from discussions with

Charles Petrie.

References
T. Berners-Lee, J. Hendler, and O. Las-

sila, “The Semantic Web,” Scientific Am.,

May 2001; www.sciam.com/print_version.

cfm?articleID=00048144-10D2-1C70-84

A9809EC588EF21.

O. Lassila and J. Hendler, “Embracing ‘Web

3.0,’” IEEE Internet Computing, vol. 11,

no. 3, 2007, pp. 90–93; www.mindswap.

org/papers/2007/90-93.pdf.

C. Bussler, B2B Integration, Springer, 2003;

www.springer.com/dal/home/computer/

database+management+&+information+

retrieval?SGWID=1-153-22-2236421-0.

E. Hyvönen, “Semantic Web Applications

in the Public Sector in Finland — Building

the Basis for a National Semantic Web In-

frastructure,” white paper, presented at the

Norwegian Semantic Days, 2006; www.

seco.hut.f i/publications/2006/hyvonen

-FinnONTO-2006-04-14.pdf.

N. Shadbolt, W. Hall, and T. Berners-Lee,

“The Semantic Web Revisited,” IEEE In-

telligent Systems, vol. 21, no. 3, 2006, pp.

96–101; http://ieeexplore.ieee.org/xpl/

freeabs_all.jsp?arnumber=1637364.

Christoph Bussler is author of several books

and journal articles on integration and

semantics. His research interests include

workflow and process management, B2B

and EAI integration, and semantic comput-

ing. Bussler has a PhD in computer science

from the University of Erlangen, Germany.

Contact him at chbussler@aol.com.

1.

2.

3.

4.

5.

2008 Editorial Calendar
JANUARY/FEBRUARY

Security for the Rest of Us

MARCH/APRIL
Software Quality Requirements:

How to Balance Competing Priorities

MAY/JUNE
Embedding Quantitative Methods

into Software Development Practices

JULY/AUGUST
Developing Scientific Software

SEPTEMBER/OCTOBER
Software Development Tools

NOVEMBER/DECEMBER
Hard Problems, Real-World Solutions

www.computer.org/sof tware

• Reliable, useful, leading-edge

information, helping software

developers and managers keep

up with rapid technology change

• The authority on translating

software theory and principles

into practice

• Peer-reviewed articles and

columns by real-world experts

• All aspects of the industry—

requirements, design, coding,

tools, testing, usability,

quality assurance, and more

