
Charles Petrie
Stanford University

Christoph Bussler
Digital Enterprise Research Institute

Service Agents and
Virtual Enterprises:
A Survey

Implementing specific principles of academic software agents

could help us build on Web service standards and finally

realize the promise of a virtual enterprise.

In a virtual enterprise (VE), a compa-
ny assembles a temporary consor-
tium of partners and services for a

certain purpose. This purpose could be a
temporary special request, an ongoing
goal to fulfill orders, or an attempt to
take advantage of a new resource or mar-
ket niche. The general rationale for form-
ing the VE is to reduce costs and time to
market while increasing flexibility and
access to new markets and resources. As
much as possible, individual companies
focus on core competencies and mission-
critical operations, outsourcing every-
thing else.

One of the ideas driving VE creation is
that of processes dynamically constructed
out of available Internet-based services as
needed at runtime. In the late 1980s,
Marty Tenenbaum talked about a “sea of
services” on the Internet that would facil-
itate VE formation. Now that we have
Web services, this idea of finding services
at runtime has great potential.

Although the VE seems increasingly

closer to realization as we move through
sequences of Internet technologies and
formats, it still remains just out of range.
In this article, we examine some of the
technical reasons for this fact and suggest
the work that remains to be done. We
advocate the introduction of academic
software agent principles, but we propose
abandoning specific implementations in
favor of building on emerging Web ser-
vice standards.

Supply Chains and
the Virtual Enterprise
A key step toward achieving a VE is to
create a set of standards and conventions
that lets software automatically find part-
ners, markets, and services as needed and
then integrate them without prior agree-
ment. Such autonomic software is essen-
tial for scaling; companies could use it to
leverage a global infrastructure that could
respond quickly to changing conditions or
to form multiple-company special projects
that last over widely varying time periods.

68 JULY • AUGUST 2003 Published by the IEEE Computer Society 1089-7801/03/$17.00©2003 IEEE IEEE INTERNET COMPUTING

W
eb

 S
er

vi
ce

s
Tr

ac
k

Consider the abstract scenario of supply chains.
A supplier can be a consumer at any point in the
process. In response to a request for a quote from
supplier 1, for example, supplier 2 could in turn
request quotes from supplier 3 and supplier 4.
Anticipating these quotes, supplier 2 could give
supplier 1 a preliminary quote, but it might need
to reneg on the quote later based on supplier 3’s
and supplier 4’s quotes. We call this a recursive
supply network (RSN).

RSNs in particular, and VEs in general, must be
able to handle contingencies and new opportuni-
ties. An RSN requires status monitoring and con-
trol; its distributed process plan should be contin-
ually monitored and changed as necessary. If we
could support such a dynamic real-time VE, busi-
ness supply chains would be faster and more effi-
cient, and we could complete projects faster and
cheaper. Moreover, we could extend this vision to
personal travel, dinner, and sport plans, ordering
(and changing or canceling) various business ser-
vices in the process.

Instead of moving toward this vision, however,
companies typically have used remote procedure
calls (RPC) and private networks based on pre-
arranged contracts. Suppose a company’s com-
posite service includes shipping, and it discovers
a shipper with superior service for the immediate

application. Shouldn’t the supply process immedi-
ately take advantage of this efficiency? Such a
concept can help us imagine completely new ways
of doing business — for instance, with third-party
brokers like today’s auction Web sites, which don’t
require end-point contracts.

Since Tenenbaum’s proposal 20 years ago, pro-
tocols that allow screen scraping have commer-
cialized the Internet. Companies specializing in
screen scraping in certain domains could sell their
metaservices to that domain service’s consumers.
Web services, especially those built on WSDL and
SOAP,1 could eliminate such intermediaries and
move us further toward realizing the VE.

Web Services
Our use of the term Web services represents a way
of publishing an explicit, machine-readable, com-
mon standard description of how to use a service
and access it via another program using a stan-
dard message transport. Industry has strongly
embraced the use of SOAP and WSDL, which have
become major standards for Web services. WSDL,
in particular, has been accepted quickly — in part
because of its simplicity in comparison with more
advanced systemic standards such as ebXML.

The importance of SOAP and WSDL is that they
offer the possibility of a simple industrial standard

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 69

Service Agents and Virtual Enterprises

Useful Information for Virtual Enterprises

This article describes many concepts and
ideas toward realizing a VE.The follow-

ing URLs describe products and technolo-
gies that are leading the way:

• Business Process Execution Language
for Web Services, www-106.ibm.com/
developerworks/library/ws-bpel

• Business Process Modeling Language,
www.bpmi.org/bpml.esp

• Business Transaction Protocol 1.0,
www.oasis-open.org/committees/
business-transactions

• Collaxa, www.collaxa.com
• Content-based Router, www-ksl.

stanford.edu/knowledge-sharing/
agents.html

• DAML-S, www.daml.org/services
• EbXML, www.ebxml.org
• EDI — UN/EDIFACT,www.unece.org/

trade/untdid/welcome.htm
• FX-Agents, http://fxagents.stanford.edu

• IATA 1998, http://snrc.stanford.edu/
~petrie/agents/agent-ec

• Multi-Agent Negotiation Testbed,www.
cs.umn.edu/magnet

• Process XML, http://snrc.stanford.edu/
~petrie/fx-agents/xserv/pxml.html

• RosettaNet,www.rosettanet.org
• Service-Oriented Negotiation, www.

ecs.soton.ac.uk/~nrj/so-neg.html
• Semantic Matchmaker, www-2.cs.cmu.

edu/~softagents/daml_Mmaker/daml-s
_matchmaker.htm

• Semantic Web-Enabled Web Services,
http://swws.semanticweb.org

• Dollar Rent-A-Car case, http://groups.
haas.berkeley.edu/citm/conferences/020
612/presentations/Segev+patankar.pdf;
www.microsoft.com/resources/case
studies/CaseStudy.asp?CaseStudyID
=11626

• TAP, http://tap.stanford.edu
• TIBCO, www.tibco.com/solutions/

products/
• Universal Business Language (UBL),

www.oasis-open.org/committees/ubl/
• UDDI,www.uddi.org/specification.html
• Web Services Conversation Language

1.0, www.w3.org/TR/wscl10
• Web Service Choreography Interface,

wwws.sun.com/software/xml/developers/
wsci

• Web Services Description Language
1.1, www.w3.org/TR/wsdl/

• Web Services Flow Language 1.0,
www-4.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf

• Web Services Inspection Language 1.0,
www-106.ibm.com/developerworks/
webservices/library/ws-wsilspec.html

• XLANG, www.gotdotnet.com/team/
xml_wsspecs/xlang-c/default.htm

• XML/EDI, www.geocities.com/Wall
Street/Floor/5815

• Yodlee, www.yodlee.com

for reading what input/output messages a service
accepts and sends, and for sending those messages
over a standard transport. This loose coupling
means that the kind of client or server software at
either end is irrelevant. SOAP and WSDL provide
an API-like abstraction from software in a light-
weight format. Additionally, they are simple open
standards with plenty of available tools, most of
which are useful for other purposes and are
becoming de facto standards in themselves. In
contrast, EDI and similar systems, which are per-
haps better-designed business-interchange stan-
dards, require expertise and special tools as well
as much longer construction times.

However, there is a strong risk of disenchantment
with WSDL. The object-oriented community has
already pointed out some of its problems.2 Moreover,
there is an expectation that we soon will be able to
discover and assemble services into new composites
dynamically and on the fly, as we need them.

Dynamic Service
Discovery with WSDL
How exactly do we discover a Web service auto-
matically and on the fly? Let’s examine the dis-
covery of new services, which is usually consid-
ered the function of universal description,
discovery, and integration (UDDI).

Why Isn’t UDDI Enough?
The goal of any service directory, including UDDI,
is to enable automatic search for desired services.
UDDI also purports to provide sufficient informa-
tion for using previously unknown services,3 just
as XML was previously touted as enabling the
understanding of previously unencountered data
and information.4 However, UDDI does not provide
service descriptions, even in theory; it is structured
to provide meta metadata about services.

Even in theory, UDDI support for automated
search is severely restricted. An official UDDI reg-
istry comes with a default set of taxonomies to
which other taxonomies can be added (or regis-
tered). Suppose our VE is not a travel agency but
that it occasionally needs to perform logistics as
part of its operations and that we want to book a
flight. We would like our software automatically
to go to a UDDI — to IBM’s UDDI at https://
uddi.ibm.com/ubr/registry.html, for example — and
ask the computer equivalent of, “are there any Web
services that book flights?”

To use the Find function, the discovery program
would have to query a UDDI node for a set of tax-
onomies. You can try this yourself by clicking on

Find and using the Advanced Search to Find a Ser-
vice. Taxonomies are not machine-readable because
there is no standard syntax (much less semantics)
for them. Suppose we had a software agent that we
somehow programmed to read new taxonomies,
that could select a Web service taxonomy, and that
could then use it for selection. This agent could
thus send a query to a UDDI node asking for Web
services classified via this taxonomy.

But services are not classified by their WSDL
operations. We cannot ask for a service that books
flights, for example, because service descriptions are
stored only in pointers (not in UDDI). Moreover,
because UDDI does not provide search functionali-
ty over these distributed service descriptions, we
can’t do any more than discover which services
have been registered with a given taxonomy.
Although this is possibly a good design decision, it
means that UDDI falls short in the semantic descrip-
tion of services necessary for automated search.

In this case, the problem is passed over to
WSDL; our software agent can only look for “trav-
el” services. In the same IBM UDDI, look for a Ser-
vice Name starting with “Travel” using Locator
Category (Taxonomy) “UNSPC” and leave the
other values blank. The first service name returned
will be “Travel Adventures Unlimited.” Clicking on
this name gets you a page showing the UDDI reg-
istry entry. Click on Details and Access Point
Address to get a list of WSDL service operations,
which is not informative. (If you haven’t followed
along, all the operation names are similar to
“P3Typex.”) Clicking on P3Type3 will get you a
Web page interface to the SOAP message showing
you that this operation has to do with airlineID.
A software agent would go directly to the WSDL
(click on “Service Description” to see this) to dis-
cover that the part name for the Input Message for
this operation is “airlineID,” but the expected
response is a little mysterious — the output mes-
sage part name is “body.” In fact, none of the oper-
ations actually books a flight.

Understanding WSDL
Suppose that UDDI or some other mechanism were
to provide distributed search of WSDL descriptions.
Could an automated software agent use those
descriptions to search for a desired service? The
previously described example leads us to suspect
not. Let’s look at a WSDL example from
www.xmethods.com. Suppose we’re looking for a
service that can find telephone numbers in Swe-
den. Could we automatically discover the repre-
sentative service “ISearchSwedishPerson”? Obvi-

70 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Web Services Track

ously, not with UDDI, but could we do it with an
agent that searched this “xmethods” site?

Two problems exist with such a search for a ser-
vice. One is that this name is not the WSDL service
name, which is “IsearchSwedishPersonservice.”
The more serious problem is that it would take a
smart search engine to realize what this service
does exactly, especially because the semantics are
encapsulated in a C programming style of capital-
izing the beginning of otherwise cojoined words.

But let’s suppose the program is a good guesser
and decides to examine the actual WSDL descrip-
tion at www.marotz.se/scripts/searchperson.exe/
wsdl/IsearchSwedishPerson to figure out if this
service will serve its intended purpose. This service
has five operations:

• HTMLSearchAddress
• HTMLSearchPhone
• XMLSearchAddress
• XMLSearchPhone
• IsAlive

These names aren’t much help because of the
naming methodology. Perhaps by examining the
I/O messages and drilling down through the XML
complex types, software might be able to discov-
er what these operations really mean. For instance,
inspecting operation HTMLSearchAddress, a
program can determine that the Input message
name is “HTMLSearchAddressRequest.” That
message, in turn, has part names of

• fName
• lName
• Address
• ZipCode
• City

If there were reference to a standard taxonomy or
ontology (not just those for registering services in
UDDI), software would have a pretty good chance
of understanding at least the term “City.” Type
specifications, if they exist, might refer to XML
schemas that could give further clues about the
messages’ semantics, and thus, service operations.
That is, something more than just categories of
businesses is necessary for service discovery.

Primarily, we’ll need a standard taxonomy or
ontology of common terms in order to provide
semantics for service operations and messages.
This could be something as elaborate as DAML-S,
TAP, RosettaNet, or even just some informal
industry de facto standard terminology. In partic-

ular, DAML-S provides a well-designed solution
to the problem of providing semantics for distrib-
uted search of Web services. While DAML-S is a
very important and good solution in many
respects, it has two weaknesses. First, it currently
only provides information at the service level and
not at the WSDL operation level. Second, it may
be too heavy for industrial requirements. UBL is
more likely to be widely adopted as a semantic
solution.

Such terminology is more likely to be agreed on
at the level of message-part names such as City,
rather than operation names like HTMLSearchAd-
dress. “City” is not defined today in DAML-S, for
instance, but it could be. The example shows that
discovery programs will have to be smart enough

to parse XML schemas using the taxonomies that
provide service operation semantics.

WSDL developers also will have to change their
RPC-style thinking. The output message of
HTMLSearchAddress is HTMLSearchAddressRe-
sponse, and its only part name is return. This
unfortunate naming methodology is quite com-
mon in WSDL, making it impossible for a program
to determine what this Web service is returning; it
would have been so much better had the part
name been something like telephone-number.
The part name of another message in another
operation is simply number. Again, this is too
generic to be meaningful to a discovery program
unless it is almost as smart as a human. None of
this is WSDL’s fault. A return can easily be
defined as a complex XML type that can be parsed
automatically by software reading the description.
This is a methodological and conceptual problem.

The larger problem is that UDDI passes off to
WSDL the issue of having an adequate service
description for search; WSDL’s designers clearly
intended the service directory to solve this prob-
lem, so now we’re at a stalemate. WSDL descrip-
tions will have to be expanded, and UDDI’s func-
tionality will have to include distributed search.
WSDL poses a technical problem for any UDDI++

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 71

Service Agents and Virtual Enterprises

Primarily, we’ll need a standard

taxonomy or ontology of common

terms in order to provide semantics for

service operations and messages.

that allows distributed search for WSDL opera-
tions. XML conventions allow an operation to be
indirectly referenced by a URI, which could be a
URL or a global URN. How to extend service
descriptions so that UDDI++ could allow a search
at the level of operations and messages is an
open issue.

Using WSDL to Use a Web Service
If we consider the two WSDL examples described
earlier, we see that descriptions sufficient for dis-
covery involve descriptions sufficient for use. How
do we know what operations we’re looking for if
we don’t know what the operations actually do?
Furthermore, knowing what the operations do pre-
sumes knowing how to use them. This is why dis-
covery involves both search and use.

If the search is successful, the service is under-
stood to be applicable for the intended purpose.
What might not be understood are the conditions
for using the service. Without machine-readable
descriptions, a software program cannot really use
Web services without a human first reading the
Web page descriptions for each service and its
operations, and then writing code.

We can illustrate this best by starting from
scratch and making an existing Web-based service
into a Web service with SOAP messages described
by WSDL. In such a case, we do not inherit naming
and semantic issues, meaning we can discover
higher-level problems with WSDL. In the FX-
Agents Project (a collaboration between the Stan-
ford Center for Information Technology, NEC, and
Intec Web & Genome to integrate Web technology
for financial applications), we chose a restaurant
from waiter.com and attempted to reimplement it
via SOAP and WSDL. Even in this simple case for a
given restaurant, we found that we needed to
understand how to execute a sequence of opera-
tions in order to use the service: we first had to
select a restaurant, get the menu, choose an entree,
make selections about the entree, and then execute
the regular payment and delivery operations. A
UDDI/WSDL++ technology therefore must provide
machine-readable instructions for sequencing
these service operations.

Over and above this, we found less obvious but
important problems with WSDL as a formal repre-
sentation for dynamically discovered services:

• WSDL handles static sequence specifications,
but not unplanned options. Pizzas require top-
pings, for example, but other menu choices do
not, meaning such a specification could be

handled with a dynamically generated XML
schema using import at runtime, although this
is not very elegant.

• There is no WSDL commitment to an autho-
rization description. In the waiter.com example,
there is membership registration with payment.
The open question is how to map different
authentication mechanisms onto WSDL.

• There is no description of cancellation terms.
By what hour or day can someone cancel an
order, and with what penalties? In the wait-
er.com example, a three-hour notice is required
to avoid a penalty.

• There is no description of service effects or
actions. How and when will food be shipped?
In this example, food ships 90 minutes after
order. What messages will be sent? Here, there
is a phone call and email later the same day
from the restaurant.

• There is no description of service preconditions.
For instance, with one restaurant, a minimum
order is US$80, delivery hours differ from take-
out hours, and the restaurant is closed Mondays.

• There is no description of payment terms. For
some restaurants, there’s a delivery charge of
$8.95, and a driver-support charge of 15 per-
cent is added to each order.

WSDL defines no message semantics for concepts
that might routinely be associated with services,
such as reasons for denial of service or even a sim-
ple concept like “service-provider.” Furthermore,
there is no provision for correlating replies — from
multiple queries of restaurants, for example, about
delivery speed. Important UDDI/WSDL lacunae
include the lack of representation trust and level-
of-service information.

WSDL technology makes no commitment
toward representing these service concepts, so
WSDL developers currently have two choices:
don’t express conditions or express them in an ad
hoc manner. Most developers choose the latter
option, which works in private practice. If design-
ers choose to express conditions this way, howev-
er, they ignore the issues of authorization and pay-
ment. Cancellation is an ad hoc operation, but this
approach doesn’t scale well because every discov-
ery program will have to be somehow programmed
for each new payment, authorization, and cancel-
lation operation.

For automatic use, there must also be explicit
tags referring to pre- and postconditions for use
of the service — for example, Dollar Rent-A-Car
requires drivers to be over 18 years of age and

72 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Web Services Track

possess a valid driver’s license. DAML-S allows
service providers to specify such conditions;
including this information separately from WSDL
could ultimately be the only solution to pre- and
postconditions.

WSDL has great promise because it is so simple,
but technologies analogous to stylesheets and
XML schema could help enrich it. Perhaps a tax-
onomy will become standardized through the use
of WSIL. We suspect the most likely outcome is
that particular WSDL operations for special func-
tions such as payment, authentication, and can-
cellation will become standardized through busi-
ness implementation and convention, and possibly
through the use of UBL.

The lack of representation in WSDL for alterna-
tives, conditions for use of service, and side effects
resulting from use of service are extremely serious
limitations for engineering VE business processes.
These descriptive lacunae are sufficient to prevent
the automatic and dynamic use of previously
unknown services in a VE and make an RSN prac-
tically impossible because new component sources
cannot be found on the fly. But the opportunity
for interesting research grows by leaps and bounds
when we consider Web service integration, which
is necessary for VEs.

Dynamic Service Integration
Assuming we have a UDDI/WSDL++ with expres-
sive power sufficient to discover and understand
service use dynamically, we would like to integrate
some set of services to accomplish a goal, such as
making a complex travel plan or RSN. Among our
fundamental desiderata for VEs are that any pub-

licly registered Web service can be consumed:

• by anyone, without requiring any change to
the service (the democratic principle), and

• anytime, without prior arrangement (the just-
in-time principle).

As Tenenbaum described it, the idea of a “sea of
services” is that we can freely consume the service
of choice when needed, without requiring the ser-
vice provider to do anything more than advertise
in the public service description used to discover
the service.

Service composition is a subissue of integration;
essentially, it involves making a set of services into
a single visible service. Several systems do an
admirable job of providing composition, includ-
ing WSFL, BPEL4WS, and Self-Serv.5 Although
composition could be an important topic for some
VEs, we are most concerned with dynamic service
integration, which might not even be compatible
with composition.

We can evaluate integration architectures along
three dimensions:

• Graph-based versus integration-based control
on runtime requirements;

• Point-to-point connections versus messages
with receivers and senders decided at runtime;
and

• Centralized versus distributed monitoring and
control of the process generated by the service
integration.

We now examine some alternatives using these

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 73

Service Agents and Virtual Enterprises

Figure 1. Internal workflow. This figure shows direct control versus control via a shared-process model.

B

Control

Input data

Output data

Direct control

Data

Business
process engine

Workflow/point-to-point

B

C

D

A

D

CShared process modelA

principles and dimensions of service integration.

Graph-Based Service Integration
In the simplest case of service integration, a cen-
tral program using direct control can manage all
control, status, and state information. For a given
application, such direct control is not a bad solu-
tion. It can be accomplished without violating our
two fundamental principles.

However, the internal workflow approach is not

sufficient if the VE is an RSN. If one of the Web
services accomplishes its promised ultimate out-
put by consuming other services, these are com-
pletely hidden from the end user and thus can’t be
monitored, much less controlled. An RSN requires
some measure of monitoring and control. One way
of achieving this is a workflow-like flow of con-
trol, which usually means that a graph of possible
transitions among all the services concerned is
developed prior to runtime (see Figure 1). This
approach violates our fundamental principles to
some degree because it doesn’t allow the use of
services and providers not specified in the graph.
However, graph-based architectures vary in the
degree to which they allow runtime flexibility. All
allow specific service providers to be chosen at
runtime from a preexisting set of partners.

WxFL models, in particular, assume that the
process (composed of service interactions) is just a
workflow, that it can be described prior to execu-
tion, and that a shared process model can be gen-
erated and used by a centralized process engine to
control process execution. BPEL4WS and its asso-
ciated transaction models address some of WSFL’s
deficiencies but violate both the democratic and
just-in-time principles: Web service integration is
accomplished via a process graph with end-to-end
connections that must be established before execu-
tion. More fundamentally, the workflow approach
defines specific processes with specific messages
among a set of pre-identified partners; it’s not based
on existing WSDL. Rather, new WSDL code must be
written to conform to the process.

This means that service providers must agree in
advance to some shared model — kept and main-
tained by some entity, and programmed with the
appropriate endpoint connections. Changing this
shared model might mean reprogramming by the
service providers, thus making dynamic service
discovery, use, and integration for VEs impossible
as well as causing maintenance and scalability
problems (see the critique of WSxL integration at
http://snrc.stanford.edu/~petrie/fx-agents/xserv/
icpaper/appendix-d.html).

A point-to-point specification of connections
presupposes a graph-based approach. ebXML, BTP,
BPML, RosettaNet, and the unimplemented WfMC
standard6 take more of a peer-to-peer transaction-
al approach. However, none of these approaches
allow runtime discovery of new actors for roles or
new activities, thus violating the just-in-time prin-
ciple because they assume that all potential part-
ners are identified prior to runtime and that all con-
crete transitions can be enumerated and described
in a process graph prior to runtime. Such standards
focus on transactions specified among preidenti-
fied partners, rather than generic transactions.

Major vendors have several efforts under way to
provide XML-based EDI via SOAP/WSDL, but they
could require a central process-execution engine
because the EDI standard doesn’t constrain the mes-
sage dialog. Moreover, such systems’ general flexi-
bility remains to be seen. The Self-Serv system
requires no centralized control engine for a given set
of transactions because it generates distributed coor-
dinations at runtime as needed. However, because of
its focus on composition, its containers are still
graph-based and thus don’t allow a completely free
choice of services and providers at runtime.

Condition-Based Service Integration
Pre- and postconditions are important to any Web
service for operation sequencing, but they’re cru-
cial to services that perform actions. Moreover, if
we define the preconditions and side effects for
each operation, we won’t need a graph-like pre-
scription of how to sequence the operations. Soft-
ware could automatically determine which opera-
tions require preconditions or are the effects of
other operations. Postconditions partially describe
whether the service is accomplished — for exam-
ple, whether food gets delivered, a flight is booked,
or a component is promised for delivery and by
when. Preconditions tell us what services might be
required to do any of these things; they can
include, for example, converting currency, provid-
ing components to be shipped for assembly, or

74 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Web Services Track

Service providers must agree in advance to

some shared model — kept and maintained

by some entity, and programmed with

appropriate endpoint connections.

reserving a room for the event to be catered.
The idea of connecting services and tasks by

pre- and postconditions at runtime is a fundamen-
tal function of AI planning7 as well as simple proj-
ect management.8 Condition-based integration can
use a workflow graph as a starting point, but it
allows for runtime changes. At a specific applica-
tion level, condition-based integration provides a
partial program for service integration, which can
be decomposed into goals or constraints that are
not satisfied or violated until services are found.8

Say that our goal is to assemble a PC with certain
requirements and that the constraints are to avoid
a certain supplier and keep the total cost below a
given amount. The software is then free to plan a
sequence of services that result in the PC being
assembled under those constraints. Many potential
plans are possible, so goals and constraints only
partially specify the program of service sequences.

Condition-based integration cannot be accom-
plished by point-to-point connections: it requires
peer-to-peer transactions. In addition to the WxFL
data messages flowing across the network, moni-
toring and control messages should coordinate
and control the application process instead of the
underlying transactions. The WxFL data messages
do not implement transactions that provide mon-
itoring and control. Additional messages that pro-
vide those functions are needed. In the most flex-
ible case, there would be an Execution Control
Language (ECL) similar to the current Agent Com-
munication Languages (ACLs).9 This approach
specifies only generic message types applicable to
any process, which potentially allows anyone
communicating in the standard set of messages to
enter at any time, depending on the authentica-
tion enforced. Like an ACL, a peer-to-peer ECL
protocol is an abstract partial program for many
processes. The ECL protocol is an implicit abstract
process model associated with message types; it
would determine only whether certain message
sequences are legal. (Of course, there also must be
further agreement on the messages’ data content,
based on standard XML schemas.)

In an approach in which we use an ECL for con-
dition-based integration, each business partner is
responsible for enforcing protocol, evaluating
received messages, and determining whether they
are legal. Each is free to send back an ACL Sorry
message, saying either “I don’t understand this
message in this context” or “I reject your request.”

There is no need for a central process engine
with its maintenance and scaling issues. We can
still pass data, but it’s augmented by a standard

for the data’s semantics and appropriate actions
for that kind of data. For example, data messages
might be of types Purchase-Order, Firm-Order,
Acknowledge-PO, Create-Order, or Order-Ful-
fillment. These message types (along with the
shared semantics) would tell the receiver what to
do with the data contained in the message, thus
adding a basic level of control to the process. Let’s
call these action control message types.

In addition to the control messages already dis-
cussed, another flexible set of message types
allows dynamic negotiation, which would be use-
ful in an RSN as well as for individual services.
Suppose automatic software wanted to negotiate
on the user’s behalf. How could someone use a dis-
count coupon to get a cheaper rate, or to know to
ask what the options are? How would a supplier
tentatively agree to terms for delivery, based on
other pending agreements? We can more or less
directly use other ACL message types for these
sorts of situations, such as those of the “contract
net” protocol.10 Extensions could enable a choice
of negotiation protocols at runtime. In any case,
ECL negotiation primitives for a given protocol
would look something like solicit-bid, pro-
pose, accept/reject, commit/reneg, and so
forth. These negotiation control message types add
another level of control and are already imple-
mented in a commercial solution.11

Dynamic Process Management
Although sufficient for dynamic process integration,
action and negotiation control messages are not suf-
ficient for the final consumer, or (recursively) for
each consumer in the RSN, to predict whether the
process goals will be met on time or if action should
be taken to correct the process. An integration of
various services is a distributed process. This requires
some form of distributed process management with
language for process control and monitoring. The
domain of this control and monitoring language is
not the application itself but rather the process exe-
cuting the application.

Distributed Workflow
You’ll notice that we have not yet mentioned sta-
tus messages. We need feedback on the RSN
process’s status and a way to fix any problems.
Going back to workflow is one way to address this
requirement; some systems use XML to express a
distributed workflow, without needing a central
process engine.12,13 These particular systems are
based on the WfMC standard, which won’t be
widely adopted and has no standard for imple-

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 75

Service Agents and Virtual Enterprises

mentation evaluation. But the “process” message
types in these systems substantially increase the
level of process monitoring and control.

There is much research to be done in this area,
especially if we aren’t constrained by the formats
current vendors suggest. As a naive start, consid-
er these definitions of a hypothetical distributed
PXML with ECL primitives step and response:

• Step has a step name, the prior step’s name (and
the action that led to this step), the sender’s role
in this current step, the current action request-
ed, one or more receivers of the next step, a ref-
erence to XML types in the message body to act
on, a reference to any superprocess of which
this step might be a subprocess, and informal
text to include in any accompanying emails to
the step’s current recipient.

• Response defines the exception action to take
if a step is not performed as expected by a cer-
tain time. It includes a list of people or pro-
grams to notify.

With the right semantics and a few simple XML tags,
you could define (completely apart from the work to
be done) descriptions of the process to be accom-
plished. Each actor could process the incoming
process step information independently, or there
could be a host engine. In the former case, each actor
might be able to modify the step as desired and to
use new services and providers at runtime. When a
process step is not performed as defined, the
response determines whom to notify. Certainly, tech-
nical issues must be worked out with this approach,
but they probably aren’t as difficult to achieve as
acceptance of a new way of doing business.

A crucial research question, as yet unexamined
in any of the systems discussed so far, is how to
control the flow of status messages. This is crucial
because different participants should have access
only to certain information about status in order
to understand context. The issue of transparency
is that they should have enough information to
reliably and efficiently provide their services, but
not enough to compromise the proprietary inter-
ests of upstream consumers of these services. For
instance, should each actor be able to see the step
just prior to the one to be executed? DAML-S does
not yet address the issues of status monitoring and
control, although it does acknowledge them.

The ACL/ECL Coordination Approach
Maintaining the state of such a distributed process
is also a difficult problem, but one for which

known techniques exist even for distributed plan-
ning and execution of tasks and services.8 Tech-
niques exist in the software agent community for
coordinating cooperative problem solving14 and
corresponding ACL primitives. Clearly, a Web ser-
vice ECL could benefit from this prior work on
multiagent systems (MASs).

An advanced but important functionality is ser-
vice integration planning.15,16 Suppose a US bank
is managing a mortgage. The bank might have the
goal of insuring the house for US$200,000, which
may not be possible. However, a smart planning
system could realize that it can decompose the
original goal into two subgoals, insuring each for
US$100,000. Compensating transactions are insuf-
ficient for such cases.

A set of AI planning technologies can address
such problems, including replanning due to con-
tingencies. Achieving explicit goals is a funda-
mental part of planning technology,17 and services
will need to advertise pre- and postconditions to
use these techniques. This is particularly important
when services have actions that affect which ser-
vice is needed next, perhaps including undoing the
action just taken.

Service Agents
So why not just use MAS technology? The acade-
mic approach hasn’t solved the fundamental prob-
lems of service discovery yet. How do interested
parties find the capability they’re looking for? How
do they advertise? How can software do this on
behalf (but without the intervention) of a person?
Many proposals along these lines exist, ranging
from content-based routing in the early 1990s to
this year’s use of DAML-S for agents,18 but none of
them has led to deployed, practical systems. DAML-
S itself does not solve the discovery problem
because it doesn’t provide a standard ontology of
business transaction concepts, such as payment.

Although the MAS community is attempting to
conform to emerging WSxL/XML standards, and
excellent efforts in this direction have appeared on
the horizon (see www.cs.georgetown.edu/~blakeb/
AgentB2B/blake_AgentB2B_Position.pdf), we
believe another approach might succeed more
quickly. Specifically, Web services might evolve
into software agents by salvaging academic soft-
ware systems.

A software agent accepts any text message from
anyone over the Internet and makes no commit-
ment to the kind of response or any future mes-
sage. Part of the WSxL approach’s success has
been to require providers to advertise services as

76 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Web Services Track

rather fine-grained operations that accept and
generate only certain messages (and at specific
addresses), which are readable in advance of send-
ing messages.

Suppose an ECL were implemented simply as
WSDL operations. Each operation would describe
its I/O messages via XML complex types and a
schema. Any other service considering sending a
Create-order, Step, or Commit-Action ECL
message could read this by using the appropriate
ECL operation for that service. The sender would
then know what input message was appropriate
and what output message to expect. This contrasts
with the general ACL approach in which each
agent is expected to parse whatever is sent.

In a previous work, one of us described a
methodology in which a Web description described
the messages each agent could send and receive.19

This was for the benefit of human agent develop-
ers for coordination development. WSDL offers the
possibility of machine-readable message descrip-
tions that software can run at execution time, with
some general standards and semantics evolving
from the business world.

As Web services become more sophisticated,
they effectively will become software agents them-
selves. We believe these new systems, or service
agents, will use an ECL to coordinate distributed
processes with no fixed process model, that they
can be developed, and that they’re necessary to
bringing dynamic VEs forward. Academics will
initially need to build unsatisfying technologies
combining DAML-S with UDDI is a good exam-
ple.20 But academically uninteresting work is
absolutely vital because there is no standard way
to represent Web service authorization, and virtu-
ally no public Web services deliver real products,
such as food or travel reservations.

To be clear, although lots of people are doing
excellent academic research in Web services, we
advocate that the academic software agent systems
be discarded (except for research purposes or unless
they stay hidden beneath WSDL technology).
Industry developers should look at MAS technolo-
gy and steal freely, and MAS researchers who want
to make a difference should start from scratch and
build on top of the emerging industrial Web ser-
vice technologies. An academic might ask, “Why
advocate throwing away good systems and devel-
oping on top of bad ones?” Our answer? Because
this approach has the advantage of having never
before been tried. Ignoring industrial technologies
leads only to published papers, while ignoring
well-studied advanced distributed computing prin-

ciples can lead to slow industrial progress due to
the necessity for re-invention based on experience.
A first step is the collaboration between Com-
merceNet and the Stanford Center for Information
Technology, which is producing workshops with
industry on such topics (see www.commerce.
net/events/ecoii-bsr-workshop.html). We will pro-
duce real business services that can leverage dor-
mant academic technologies, ultimately resulting
in the ability to program the world.

Acknowledgments
This work was done as part of the FX-Agents Project at Stan-

ford University in partnership with NE, Intec Web, and Genome.

The FX-Agents Project participants contributing to this work

include Hans Bjornsson, Rada Chirkova, Jung Ung Min, Waqar

Mohsin, Hidehito Gomi, Daishi Kato, Kyohei Kawazoe, Mike

Kassoff, and Michael Genesereth. This work benefited greatly

from outside contributions from Richard Jullig, Donald Stein-

er, Michael Kolb, and Marty Tenenbaum.

References

1. F. Curbera et al., “Unraveling the Web Services Web: An

Introduction to SOAP, WSDL, and UDDI,” IEEE Internet

Computing, vol. 6, no. 2, 2002, pp. 86–93.

2. S. Vinoski, “Web Services Interaction Models Part 1: Cur-

rent Practice,” IEEE Internet Computing, vol. 6, no. 3, 2002,

pp. 89–81.

3. R. Trivedi, The Role of Taxonomies in UDDI: tModels

Demystified, Junipermedia, 2002; www.developer.com/

java/print.php/10922_1367781_2.

4. C. Petrie, “The XML Files,” IEEE Internet Computing, vol.

2, no. 3, 1998; http://snrc.stanford.edu/~petrie/online/

v2i3-webword.html.

5. B. Benatallah, Q. Sheng, and M. Dumas, “The Self-Serv

Environment for Web Services Composition,” IEEE Internet

Computing, vol. 7, no. 1, 2003, pp. 40–48.

6. “Workflow Management Coalition Workflow Standard—

Interoperability Wf-XML Binding,” 2000; www.wfmc.org/

standards/docs/Wf-XML-1.0.pdf.

7. J.F. Allen, J. Hendler, and A. Tate, eds., Readings in Plan-

ning, Morgan Kaufmann, 1990.

8. C. Petrie, S. Goldman, and A. Raquet, “Agent-Based Project

Management,” LNAI, vol. 1600, Springer-Verlag, 1999;

www-cdr.Stanford.edu/ProcessLink/papers/DPM/dpm.html.

9. Y. Labrou, T. Finin, and Y. Peng, “The Current Landscape

of Agent Communication Languages,” IEEE Intelligent Sys-

tems, vol. 14, no. 2, 1999, pp. 45–52; http://umbc.edu/

~finin/papers/ieee99.pdf.

10. R.G. Smith, “The Contract-Net Protocol: High-Level Com-

munication and Control in a Distributed Problem Solver,”

IEEE Trans. Computers, vol. 29, no. 12, 1980, pp. 1104–1113.

11. D. Steiner and M. Kolb, “Enabling Business Process Con-

nectivity,” WebV2, 2002 ; http://snrc.stanford.edu/~petrie/

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 77

Service Agents and Virtual Enterprises

fx-agents/xserv/webv2.pdf.

12. M. zur Muehlen and F. Klein, “AFRICA: Workflow Interop-

erability Based on XML-Messages,” Proc. Workshop Infra-

structures for Dynamic Business-to-Business Service Out-

sourcing (ISDO’00), Information Soc. Development Office,

2000; www.wi.unimuenster.de/is/mitarbeiter/ismizu/MIXU.

FLKL-AFRICA(CAiSE2000).pdf.

13. R. Tolksdorf, “Workspaces: A Web-Based Workflow Manage-

ment System,” IEEE Internet Computing, vol. 6, no. 5, 2002.

14. M. Singh, “Be Patient and Tolerate Imprecision: How

Autonomous Agents Can Coordinate Effectively,” Proc.

Int’l Joint Conf. Artificial Intelligence (IJCAI), Morgan

Kauffman, 1999, pp 512–517; www.csc.ncsu.edu/faculty/

mpsingh/papers/mas/ijcai-99.ps.gz.

15. D. McDermott “Estimated-Regression Planning for Inter-

actions with Web Services,” Proc. AI Planning Systems

Conf. (AIPS’02), AAAI Press, 2002; ftp://ftp.cs.yale.edu/

pub/mcdermott/papers/aips02.pdf.

16. S. McIlraith and T. Son, “Adapting Golog for Composition

of Semantic Web Services,” Proc. 8th Int’l Conf. Knowledge

Representation and Reasoning (KR2002), Morgan Kauffman,

2002; www.daml.org/services/mci-son-kr02.ps.

17. M. Papazoglou et al., XSRL: An XML Web-Services Request

Language, tech. report #DIT-02-0079, Univ. Trento, Povo,

Italy, 2002; www.ebpml.org/xsrl.zip.

18. T.R. Payne, R. Singh, and K. Sycara. “Calendar Agents on

the Semantic Web,” IEEE Intelligent Systems, vol. 17, no.

3, 2002, pp. 84–86; http://dsonline.computer.org/0205/

departments/sem.htm.

19. C. Petrie, “Agent-Based Software Engineering,” Agent-Ori-

ented Software Eng. (LNCS vol. 1957), P Ciancarini and M.

Wooldridge, eds., Springer-Verlag, 2000, pp. 59–76; www.

springer.de/cgi/svcat/search_book.pl?isbn=3-540-41594-7.

20. M. Paolucci et al., “Importing the Semantic Web in UDDI,”

to appear in Proc. Web Services, E-Business and Semantic

Web Workshop, 2003; www.softwagents.ri.cmu.edu/papers/

Essw.pdf.

Charles Petrie is a senior research scientist at Stanford Univer-

sity. His research interests include concurrent engineering

and distributed process management. He received a PhD in

computer science from the University of Texas at Austin.

Contact him at petrie@stanford.edu.

Christoph Bussler is executive director at the Digital Enterprise

Research Institute at the National University of Ireland in

Galway. His research interests include B2B integration,

process management, and Semantic Web services. He

received a PhD in computer science from the University of

Erlangen, Germany. He is also a member of the IEEE CS

and the ACM. Contact him at ChBussler@aol.com; http://

hometown.aol.com/ChBussler.

78 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Web Services Track

Architectures
Support Services

Algorithm/Protocol Design and Analysis
Mobile Environment

Mobile Communication Systems
Applications

Emerging Technologies

IEEE Transactions on
Mobile Computing

revolutionary new quarterly journal that seeks out and
delivers the very best peer-reviewed research results on
mobility of users, systems, data, computing information

organization and access, services, management, and applications.
IEEE Transactions on Mobile Computing gives you remarkable
breadth and depth of coverage...

A

To subscribe:
http://

computer.org/tmc
or call

USA and CANADA:

+1 800 678 4333
WORLDWIDE:

+1 732 981 0060

Subscribe
NOW!

