
7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 1/10

Zero downtime database migration and replication to
and from Cloud Spanner
by Christoph Bussler, Szabolcs Rozsnyai

Christoph Bussler

Jul 13 · 12 min read

What is zero downtime database migration and replication?
Zero downtime database migration and replication (Database Migration — Concepts

and Principles (Part 1), Database Migration — Concepts and Principles (Part 2)) refers

to migrating or replicating data from a source database to a target database without

impacting the client’s access of the source database in terms of availability or scalability.

A client can continue to operate on the source database while the database migration or

replication progresses.

In the general case, database migration migrates all data from the source database to a

target database with the goal to retire the source database and make the target database

the primary system and source of truth. The typical use case is the migration from a self-

managed database in an on-premise environment to a cloud-managed relational

database like Cloud Spanner in the Google Cloud.

Database replication addresses the use cases where data is continuously replicated

without the intention to retire the source database. Instead, the data of the source

database is made available for downstream processing, for example, analytics in

BigQuery.

Zero downtime is better called near-zero downtime for the migration case since clients

have to reconnect to the target database after the migration is completed and that will

incur a window of being disconnected.

The following diagram shows a generic migration architecture that covers three use

cases that are discussed in this blog:

https://medium.com/@chbussler?source=post_page-----99ad0c654d12----------------------
https://medium.com/@chbussler?source=post_page-----99ad0c654d12----------------------
https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12?source=post_page-----99ad0c654d12----------------------
https://cloud.google.com/solutions/database-migration-concepts-principles-part-1
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2
https://cloud.google.com/spanner
https://cloud.google.com/bigquery


7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 2/10

Cloud Spanner database migration architecture overview

Migration to Cloud Spanner database: migration and replication from an on-

premises environment or other cloud

Migration from Cloud Spanner database: replication to the analytics system

BigQuery

Migration between two Cloud Spanner databases: migration and replication

between Cloud Spanner databases in two different regions

The diagram shows a migration technology running on a migration server for each of

the three use cases that performs the migration or replication. Depending on the use

case it might be the same or different migration technology since not all migration

technologies support the same source and target databases.

In your specific context it is possible that you have all three of these use cases at the

same time, or only a subset of those.

Key areas of database migration design
No matter the available migration technology, there are key areas of

migration/replication design that have to be addressed and resolved. These are

Schema difference: the source and target database might have a different schema



7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 3/10

Data difference: not all data are migrated necessarily, a relevant subset can be

migrated as well

Missing source database functionality: the source database provides functionality

that is unavailable in the target database

Available target database functionality: the target database has functionality that is

not used or available in the source database

Schema difference
In the context of Cloud Spanner the source database and target database schema are

different since Cloud Spanner is cloud-managed and has its own relational schema

constructs like data types and available schema design options. The only exception is the

use case of migrating between two Cloud Spanner databases that have the same schema

— of course it is possible in this case as well that the schemas are different.

The schema design of the target database has to ensure that it represents the same data

semantics of the source database schema. Tables have to be able to store all data from

the source database in structure (tables, columns) as well as data types. The latter might

require to map data types from the source database to data types in the target database.

If a type does not have a direct equivalence, alternative types have to be chosen that

might require transformation of the actual data being migrated during migration

runtime.

While automatic schema translation tools would be an interesting technology to have,

they can only provide a first approximation as a starting point as some schema design

decisions also depend on the transaction mix executing against a schema.

HarbourBridge is such an example that is able to generate a Cloud Spanner schema and

populate the Cloud Spanner database out of a PostgreSQL pg_dump. Nevertheless, its

primary goal is to bootstrap Cloud Spanner evaluation processes as it ignores many

many PostgreSQL features (e.g. indexes, stored procedures, constraints) or maps data

types that do not have a direct correspondence to STRING(MAX). Iterations after that

are manual in order to optimize the schema design. In addition, schema definitions are

(configuration) code and as such need to be controlled through a software management

system like GitHub.

https://github.com/cloudspannerecosystem/harbourbridge


7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 4/10

Data difference
Since migrating to Cloud Spanner is a migration or replication between two different

systems, data type transformation might be required for data types that do not have a

direct match.

In many cases all data from the source database are migrated to the target database

without exception. However, this is not always the case. Database migration provides an

opportunity to clean up data and migrate only data to the target database that is actually

needed. Filtering can ensure that only data complying to specific criteria are migrated;

data not fulfilling the criteria can be dropped during migration (or replication).

Missing source database functionality
Each database engine when it is designed and built has a different design focus and

design goal resulting in a different set of available database functionality. Not every

feature of every database engine is available in every other database engine.

When migrating to Cloud Spanner there might be features being used in the source

database that are not directly available in Cloud Spanner at this point. In such a case the

functionality (if still needed after migration) might have to be implemented in the

application layer. For example, a source database might utilize stored procedures,

(materialized) views, partitions, triggers, functions, sequences or certain constraints

which are not provided by Cloud Spanner at this time.

In some cases, however, it is a positive situation as it forces refactoring that an

engineering organization was planning for a long time anyway. Over time it has turned

out that performance gains from utilizing stored procedures are insignificant compared

to the downsides of encapsulating business and transaction logic in stored procedures in

addition to the application layer. Stored procedures promote additional maintenance

and development overhead, reduce testability (e.g. unit and integration tests), increase

vendor lock-in, add complexity to CI/CD pipelines specifically around roll-out scenarios

(dev/test/prod) and version control. For example, in a source database autonomous

transactions might have been used that caused uncertainty about the database behavior,

especially in context of failures. Cloud Spanner does not provide the concept of

autonomous transactions, and thereby forces the re-implementation of autonomous



7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 5/10

transactions as regular transactions. This improves the clarity of the implementation as

well as the system behavior.

Available target database functionality
In many cases the target database has features that are not available in the source

database. In Cloud Spanner’s case an example is interleaved tables, aka, tables that are

in a parent-child relationship. These are available to model 1:n part-of relationships as

part of the schema design. Interleaved tables provide increased throughput and reduced

latency since the child rows of a parent row are collocated on storage. When joining a

parent and its child rows the execution will only have one storage access. However, if the

child table is queried independently the performance will have an adverse effect.

Interleaved tables can be used for optimization in context of migrating many-to-many

relationships to Cloud Spanner. A many-to-many relationship requires at least three

tables, two containing data, and one relationship table. The schema design options to

optimize the relationship table depends on the query access patterns (i.e. query

direction) of the application. If the n:m relationship is mostly resolved unidirectional the

three tables can be interleaved instead resulting into two or only one table, however, this

would require data duplication.

In some cases bi-directional low latency queries need to be provided in case of n:m

relationships. This can be achieved by creating two relationship tables serving both

query directions in an interleaved fashion. Downside is that the application needs to

duplicate data to two intermediate tables to resolve the relationships and the resulting

table is not normalized in terms of a sound relational model.

Another feature that supports high throughput are indexes using the STORING clause

that stores data from the indexed table into the index itself reducing the number of

round trips.

Additional design choices with Cloud Spanner need to be made when migrating table

keys. While the key data type from the source can be mapped to a Cloud Spanner

supported equivalent, the key ranges and queries need to be examined and adjusted to

avoid hot-spotting (see more on Schema design best practices).

https://cloud.google.com/spanner/docs/schema-and-data-model#parent-child_table_relationships
https://cloud.google.com/spanner/docs/secondary-indexes#storing-clause
https://cloud.google.com/spanner/docs/schema-design#primary-key-prevent-hotspots


7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 6/10

On the application side, the usage of transactions might need to be adjusted and

potentially re-designed. The source database might offer a different set of isolation

levels and transaction features that need to be adjusted and re-designed to get the most

benefits out of Cloud Spanner or to replicate the same behavior. Cloud Spanner supports

strong consistency.

Cloud Spanner supports different types of transactions such as read only (both time-

bound stale as well as strongly consistent reads) and read/write transactions, whereas

the latter relies on pessimistic locking which may abort transactions, requiring

application side retries. These are usually taken care of by the officially supported Cloud

Spanner Client libraries, but nevertheless within a transaction scope only idempotent

operations are allowed as in case of an error they can’t be rolled back and might have

side-effects.

Another example are mutations (API) and discussion in DML and Mutations — a tale of

two data altering techniques in Cloud Spanner. Mutations is an interface that allows to

collect queries as part of a transaction whereby the execution of these queries is only

started when the transaction commit is issued. This means that only a single database

round trip is needed independent of how many queries are part of the transaction. This

increases the throughput significantly from an application perspective.

These Cloud Spanner specific design features (and additional features not discussed

here like partitioned reads and partitioned DML statements) need to be taken into

account in the context of building or migrating an application to take full advantage of

Cloud Spanner and its capabilities.

Database migration technologies
Several different migration technologies are available that provide database migration

and replication support for different types of use cases.

Migration and replication systems. Migration and replication systems are

technologies that can ingest data from a multitude of sources and migrate or

replicate the sources to Cloud Spanner. For example, Striim is such a migration

technology. It can connect to many sources using change data capture technology or

batch readers and migrate/replicate the received data to Cloud Spanner. A Qwiklabs

https://cloud.google.com/blog/products/gcp/why-you-should-pick-strong-consistency-whenever-possible
https://cloud.google.com/spanner/docs/transactions
https://cloud.google.com/spanner/docs/reference/libraries
https://cloud.google.com/spanner/docs/modify-mutation-api
https://medium.com/google-cloud/dml-and-mutations-a-tale-of-two-data-altering-techniques-in-cloud-spanner-df13c49f2617
https://cloud.google.com/spanner/docs/reads#read_data_in_parallel
https://cloud.google.com/spanner/docs/dml-tasks#partitioned-dml
http://www.striim.com/


7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 7/10

hands-on lab shows how zero downtime migration to Cloud Spanner works: Online

Data Migration to Cloud Spanner using Striim.

Export/import. If database downtime is an option for the period of data migration

from the source to the target, export/import can be used. If you are migrating from

another Google Cloud database (or another instance of Cloud Spanner — from a

regional instance to a multi regional instance) using export/import, we recommend

you use Dataflow to accomplish this. Follow the instructions here for export and

import. From the source exported data will have to be transformed in order to match

the schema in the Cloud Spanner target database (unless the source is Cloud

Spanner itself and the schemas are the same).

Incremental batch reading. Another available technology is incremental batch

reading. This approach is based on a column in the source schema that indicates if a

row was changed. A batch reader filters for not-yet-read rows, extracts those, and

writes those to a target system. Example are Spanner Batch Reader,

cloudspannerecosystem/spanner-change-watcher or Deploying event-sourced

systems with Cloud Spanner.

Evaluation tooling. Some technology provides the ability to simplify the evaluation

of a migration to Cloud Spanner. A tool for PostgreSQL is HarbourBridge.

Dual-write. Dual-write is an often cited approach for zero downtime migration or

replication, however, it is fraught with problems and not recommended except for

perhaps super-narrow specialized use cases: Online Database Migration by Dual-

Write: This is not for Everyone.

The migration technology mentioned above is an overview of the currently available

technology and as time passes more technologies will be available and being built.

Migration to Cloud Spanner database
Broadly speaking, the migration or replication of a source database to a Cloud Spanner

database has several phases:

Migration/replication setup. This phase addresses the key areas of database

migration and replication. One area that cannot be emphasized enough is that Cloud

Spanner provides features that are not available in source database systems and

https://www.qwiklabs.com/focuses/10779?catalog_rank=%7B%22rank%22%3A1%2C%22num_filters%22%3A0%2C%22has_search%22%3Atrue%7D&parent=catalog&search_id=6054947
https://cloud.google.com/spanner/docs/export
https://cloud.google.com/spanner/docs/import
https://www.striim.com/docs/en/spanner-batch-reader.html
https://github.com/cloudspannerecosystem/spanner-change-watcher
https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner
https://github.com/cloudspannerecosystem/harbourbridge
https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b


7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 8/10

those might make a huge difference in performance, throughput and scalability, like

interleaved tables, distributed query processing and dynamic scaling.

Testing. Testing the functionality of the migration as well as the scalability are key

and are an important activity.

Migration/replication execution. The execution is a multi-step process that

includes initial load and continued migration (for both, migration and replication).

In the case of migration additional steps follow: draining, cut-over and source

database deletion. The steps are outlined in detail in Database migration: Concepts

and principles (Part 2).

Possible fallback. It is possible that problems arise not directly after the cut-over,

but down the road, days or weeks after the migration is completed. For these

situations it might be important to prepare a fallback plan: this requires a reverse

migration setup, as described here.

A discussion in context of a concrete source database system is Migrating from an

Oracle® OLTP system to Cloud Spanner.

Migration from Cloud Spanner database
Cloud Spanner cannot only be a target database to migrate to, it can be a source

database as well. Since Cloud Spanner does not provide a transaction log or a change

data capture interface, the migration tool of choice is an incremental batch reader, as

discussed above in Database migration technologies.

As outlined this requires an additional column in order to record when rows have

changed so that an incremental batch reader can detect new changes since its last read.

One example, as shown in the architecture diagram above is replicating data from Cloud

Spanner to BigQuery for continued business data analysis. The migration system used

must not only be able to read from Cloud Spanner, but also transform the data into the

configured BigQuery schema, use the BigQuery interfaces for inserting or merging data

as well as aware of the limits BigQuery sets when it comes to the data load activities.

Like migrating to Cloud Spanner, a replication from Cloud Spanner to for example

BigQuery is a database migration/replication design and execution project.

https://cloud.google.com/spanner/docs/schema-and-data-model#parent-child_table_relationships
https://cloud.google.com/spanner/docs/query-execution-operators#distributed_operators
https://cloud.google.com/spanner/docs/instances#nodes_versus_replicas
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2#phase_6_fallback
https://cloud.google.com/solutions/migrating-oracle-to-cloud-spanner


7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 9/10

Migration between two Cloud Spanner databases
A special case is the migration or replication between two Cloud Spanner databases. In

this case the source and target database are the same database system, and most likely

the schemas are the same.

Use cases for a Cloud Spanner to Cloud Spanner migration or replication are

Migration from single to multi-region deployment. A single region deployment

was sufficient initially, however, with changing requirements a multi-region

deployment is necessary. This requires a migration from a single region Cloud

Spanner deployment to a multi-region deployment.

Asynchronous replication. For reasons of synchronous replication, a Cloud

Spanner database is replicated to one or several additional regions. This is a use case

where data, once created, must be available for read access in independent

geographic areas.

Multi-tenant data management. In multi-tenant deployments tenants’ data might

be stored in separate databases so that each tenant is independent of any other

tenant. It might be required for legal or technical reasons (e.g., noisy neighbor,

skewed growth) that a tenant’s database must be moved from one Cloud Spanner

instance to another Cloud Spanner instance.

Cloud Spanner instance consolidation. Over time several Cloud Spanner instances

might have been created and the original architectural and technical requirements

changed so that databases can be consolidated in fewer Cloud Spanner instances. In

this case databases are migrated between Cloud Spanner instances.

The above use cases are only a subset and additional use cases might exist in customer

projects depending on the context and requirements.

Summary
Concluding, the relational database management system Cloud Spanner can be the

source and target database system for database migration and replication. Several

migration technologies exist that can be deployed to implement the required use cases



7/14/2020 Zero downtime database migration and replication to and from Cloud Spanner | Medium

https://medium.com/@chbussler/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12 10/10

therefore making Cloud Spanner an excellent option for migrating with zero downtime

to a scalable and consistent relational database management system.

What’s next
Review the complexities and perils of database migration and the migration tools

that make it repeatable: Database migration: Concepts and principles (Part 1),

Database migration: Concepts and principles (Part 2), Online Database Migration by

Dual-Write: This is not for Everyone.

Setup a database migration yourself in this hands-on lab: Online Data Migration to

Cloud Spanner using Striim.

Learn more about Cloud Spanner and Google Cloud.

Disclaimer
Christoph Bussler is a Solutions Architect and Szabolcs Rozsnyai is a Data Management

Specialist at Google, Inc. (Google Cloud). The opinions stated here are our own, not

those of Google, Inc.

Google Cloud Cloud Spanner Database Migration Distributed Database Data Integration

About Help Legal

Get the Medium app

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2
https://medium.com/@chbussler/online-database-migration-by-dual-write-this-is-not-for-everyone-cb4307118f4b
https://www.qwiklabs.com/focuses/10779?catalog_rank=%7B%22rank%22%3A1%2C%22num_filters%22%3A0%2C%22has_search%22%3Atrue%7D&parent=catalog&search_id=6054947
https://cloud.google.com/spanner
https://cloud.google.com/
https://medium.com/tag/google-cloud
https://medium.com/tag/cloud-spanner
https://medium.com/tag/database-migration
https://medium.com/tag/distributed-database
https://medium.com/tag/data-integration
https://medium.com/?source=post_page-----99ad0c654d12----------------------
https://medium.com/about?autoplay=1&source=post_page-----99ad0c654d12----------------------
https://help.medium.com/hc/en-us?source=post_page-----99ad0c654d12----------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----99ad0c654d12----------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----99ad0c654d12----------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----99ad0c654d12----------------------

