
10/23/22, 7:23 AM JSON in PostgreSQL (Part 2: AlloyDB for PostgreSQL) | by Christoph Bussler | Oct, 2022 | Medium

https://chbussler.medium.com/json-in-postgresql-part-2-alloydb-for-postgresql-4d477229f488 1/4

JSON in PostgreSQL (Part 2: AlloyDB for
PostgreSQL)
Some performance numbers when inserting JSON into AlloyDB for
PostgreSQL

As outlined in Part 1 (JSON in PostgreSQL (Part 1: Setup and Measurement)) this
blog shows the performance numbers I got with AlloyDB for PostgreSQL.

Overview of setup
The table and query is exactly the same as in Part 1. The setup for AlloyDB for
PostgreSQL and the driver VM running pgbench is as follows.

AlloyDB for PostgreSQL configuration

I used the largest deployment option available in AlloyDB for PostgreSQL currently
and setup an AlloyDB for PostgreSQL cluster as follows:

Cluster specification (no read pools):

Version: PostgreSQL 14 compatible
 Type: Highly available

Primary instance specification

High availability: Highly available (multi-zone)
 Machine type: 64 vCPU, 512 GB

The PostgreSQL version in AlloyDB for PostgreSQL is as follows:

select version();version

 PostgreSQL 14.4 on x86_64-pc-linux-gnu, compiled by Debian clang

https://chbussler.medium.com/json-in-postgresql-part-1-setup-and-measurement-5e365c57048

10/23/22, 7:23 AM JSON in PostgreSQL (Part 2: AlloyDB for PostgreSQL) | by Christoph Bussler | Oct, 2022 | Medium

https://chbussler.medium.com/json-in-postgresql-part-2-alloydb-for-postgresql-4d477229f488 2/4

version 12.0.1, 64-bit
(1 row)

Driver VM specification

The VM that runs the pgbench execution is specified as follows (the largest I was
allowed to create — there are larger once available):

Machine type: n2-highcpu-8
 CPU platform: Intel Cascade Lake

 Architecture: x86/64

Execution: inserting with pgbench

Preliminaries

Each of the three insert queries is run for 60 seconds, with 15 clients. The results are
as follows (directly copied from the terminal after pgbench completed).

Empty document (size 2 bytes)

pgbench -n -c 38 -r -T 60 -h 10.0.0.7 -U jsondev -f writer_2.sql
json_database

 Password:
 transaction type: writer_2.sql

 scaling factor: 1
 query mode: simple
 number of clients: 38

 number of threads: 1
 duration: 60 s

 number of transactions actually processed: 1907569
 latency average = 1.195 ms

 tps = 31791.686004 (including connections establishing)
 tps = 31800.762826 (excluding connections establishing)
 statement latencies in milliseconds:

Document of size 1735 bytes

10/23/22, 7:23 AM JSON in PostgreSQL (Part 2: AlloyDB for PostgreSQL) | by Christoph Bussler | Oct, 2022 | Medium

https://chbussler.medium.com/json-in-postgresql-part-2-alloydb-for-postgresql-4d477229f488 3/4

pgbench -n -c 39 -r -T 60 -h 10.0.0.7 -U jsondev -f writer_1735.sql
json_database

 Password:
 transaction type: writer_1735.sql

 scaling factor: 1
 query mode: simple
 number of clients: 39

 number of threads: 1
 duration: 60 s

 number of transactions actually processed: 1704598
 latency average = 1.373 ms

 tps = 28409.254110 (including connections establishing)
 tps = 28417.272609 (excluding connections establishing)
 statement latencies in milliseconds:

 1.310 INSERT INTO json_schema.json_document
(document_identifier, time_inserted,

Document of size 4503 bytes

pgbench -n -c 39 -r -T 60 -h 10.0.0.7 -U jsondev -f writer_4503.sql
json_database

 Password:
 transaction type: writer_4503.sql

 scaling factor: 1
 query mode: simple
 number of clients: 39

 number of threads: 1
 duration: 60 s

 number of transactions actually processed: 1689114
 latency average = 1.385 ms

 tps = 28151.091217 (including connections establishing)
 tps = 28159.040388 (excluding connections establishing)
 statement latencies in milliseconds:

 1.302 INSERT INTO json_schema.json_document
(document_identifier, time_inserted,

Execution — Summary
In summary, the larger the document, the less inserts per second can be achieved.
That is expected as the binary representation JSONB requires parsing and

conversation effort that increases with the size of the document.

TPS for 2 bytes: 31800

10/23/22, 7:23 AM JSON in PostgreSQL (Part 2: AlloyDB for PostgreSQL) | by Christoph Bussler | Oct, 2022 | Medium

https://chbussler.medium.com/json-in-postgresql-part-2-alloydb-for-postgresql-4d477229f488 4/4

TPS for 1735 bytes: 28417

TPS for 4503 bytes: 28159

Summary
Obviously a production system like AlloyDB for PostgreSQL has significant better
performance compared to my laptop. The system was not tuned and used with its
default configuration. In addition, larger driver VMs are available, but not accessible
to me. Still, these performance numbers are one data point to get a rough idea on
what is possible.

